James T. Sandefur
Discrete Dynamical Modeling
James T. Sandefur
Discrete Dynamical Modeling
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book presents an introduction to a wide range of techniques and applications for dynamical mathematical modelling, modelling that is useful in studying how things change over time. The book uses topics from algebra and encourages students to develop a different way of thinking about mathematics and how to use it in their field of interest. Their are no mathematical prerequisites beyond algebra.
Andere Kunden interessierten sich auch für
Hsiao-Dong ChiangStability Regions of Nonlinear Dynamical Systems177,99 €
Sidorov DenisINTEGRAL DYNAMICAL MODELS100,99 €
Ouannas AdelFRACTIONAL DISCRETE CHAOS83,99 €
P. P. J. Van Den BoschModeling, Identification and Simulation of Dynamical Systems260,99 €
Ken Kwong-Kay WongMastering Partial Least Squares Structural Equation Modeling (Pls-Sem) with Smartpls in 38 Hours12,99 €
Niels J. BlunchIntroduction to Structural Equation Modeling Using IBM SPSS Statistics and Amos177,99 €
John MintornThe Handbook For Modeling Wax Flowers (1844)13,99 €-
-
-
This book presents an introduction to a wide range of techniques and applications for dynamical mathematical modelling, modelling that is useful in studying how things change over time. The book uses topics from algebra and encourages students to develop a different way of thinking about mathematics and how to use it in their field of interest. Their are no mathematical prerequisites beyond algebra.
Produktdetails
- Produktdetails
- Verlag: Oxford University Press
- Seitenzahl: 444
- Erscheinungstermin: 1. Juli 1993
- Englisch
- Abmessung: 240mm x 161mm x 28mm
- Gewicht: 828g
- ISBN-13: 9780195084382
- ISBN-10: 0195084381
- Artikelnr.: 21271088
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Oxford University Press
- Seitenzahl: 444
- Erscheinungstermin: 1. Juli 1993
- Englisch
- Abmessung: 240mm x 161mm x 28mm
- Gewicht: 828g
- ISBN-13: 9780195084382
- ISBN-10: 0195084381
- Artikelnr.: 21271088
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Chapter 1: Introduction to dynamic modeling
1.: Modeling drugs in the bloodstream
2.: Terminology
3.: Equilibrium values
4.: Dynamic economic applications
5.: Applications of dynamics using spreadsheets
Chapter 2: First order dynamical systems
1.: Solutions to linear dynamical systems with applications
2.: Solutions to an affine dynamical system
3.: An introduction to genetics
4.: Solution to affine dynamical systems with applications
5.: Applications to finance
Chapter 3: Introduction to probability
1.: The multiplication to probability
2.: Introduction to probability
3.: Multistage tasks
4.: An introduction to Markov chains
Chapter 4: Nonhomogeneous dynamical systems
1.: Exponential terms
2.: Exponential terms, a special case
3.: Fractal geometry
4.: Polynomial terms
5.: Polynomial terms, a special case
Chapter 5: Higher order linear dynamical systems 183
1.: An introduction to second order linear equations
2.: Multiple roots
3.: The gambler's ruin
4.: Sex-linked genes
5.: Stability for second order affine equations
6.: Modeling a vibrating string
7.: Second order nonhomogeneous equations
8.: Gambler's ruin revisited
9.: A model of a national economy
10.: Dynamical systems with order greater than two
11.: Solutions involving trigonometric functions
Chapter 6: Introduction to nonlinear dynamical systems
1.: A model of population growth
2.: Using linearization to study stability
3.: Harvesting strategies
4.: More linearization
Chapter 7: Vectors and matrices
1.: Introduction to vectors and matrices
2.: Rules of linear algebra
3.: Gauss-Jordan elimination
4.: Determinants
5.: Inverse matrices
Chapter 8: Dynamical systems of several equations
1.: Introduction to dynamical systems of several equations
2.: Characteristic values
3.: First order dynamical systems of several equations
4.: Regular Markov chains
5.: Absorbing Markov chains
6.: Applications of absorbing Markov chains
7.: Long term behavior of solutions
8.: The heat equation
9.: Bibliography
1.: Modeling drugs in the bloodstream
2.: Terminology
3.: Equilibrium values
4.: Dynamic economic applications
5.: Applications of dynamics using spreadsheets
Chapter 2: First order dynamical systems
1.: Solutions to linear dynamical systems with applications
2.: Solutions to an affine dynamical system
3.: An introduction to genetics
4.: Solution to affine dynamical systems with applications
5.: Applications to finance
Chapter 3: Introduction to probability
1.: The multiplication to probability
2.: Introduction to probability
3.: Multistage tasks
4.: An introduction to Markov chains
Chapter 4: Nonhomogeneous dynamical systems
1.: Exponential terms
2.: Exponential terms, a special case
3.: Fractal geometry
4.: Polynomial terms
5.: Polynomial terms, a special case
Chapter 5: Higher order linear dynamical systems 183
1.: An introduction to second order linear equations
2.: Multiple roots
3.: The gambler's ruin
4.: Sex-linked genes
5.: Stability for second order affine equations
6.: Modeling a vibrating string
7.: Second order nonhomogeneous equations
8.: Gambler's ruin revisited
9.: A model of a national economy
10.: Dynamical systems with order greater than two
11.: Solutions involving trigonometric functions
Chapter 6: Introduction to nonlinear dynamical systems
1.: A model of population growth
2.: Using linearization to study stability
3.: Harvesting strategies
4.: More linearization
Chapter 7: Vectors and matrices
1.: Introduction to vectors and matrices
2.: Rules of linear algebra
3.: Gauss-Jordan elimination
4.: Determinants
5.: Inverse matrices
Chapter 8: Dynamical systems of several equations
1.: Introduction to dynamical systems of several equations
2.: Characteristic values
3.: First order dynamical systems of several equations
4.: Regular Markov chains
5.: Absorbing Markov chains
6.: Applications of absorbing Markov chains
7.: Long term behavior of solutions
8.: The heat equation
9.: Bibliography
Chapter 1: Introduction to dynamic modeling
1.: Modeling drugs in the bloodstream
2.: Terminology
3.: Equilibrium values
4.: Dynamic economic applications
5.: Applications of dynamics using spreadsheets
Chapter 2: First order dynamical systems
1.: Solutions to linear dynamical systems with applications
2.: Solutions to an affine dynamical system
3.: An introduction to genetics
4.: Solution to affine dynamical systems with applications
5.: Applications to finance
Chapter 3: Introduction to probability
1.: The multiplication to probability
2.: Introduction to probability
3.: Multistage tasks
4.: An introduction to Markov chains
Chapter 4: Nonhomogeneous dynamical systems
1.: Exponential terms
2.: Exponential terms, a special case
3.: Fractal geometry
4.: Polynomial terms
5.: Polynomial terms, a special case
Chapter 5: Higher order linear dynamical systems 183
1.: An introduction to second order linear equations
2.: Multiple roots
3.: The gambler's ruin
4.: Sex-linked genes
5.: Stability for second order affine equations
6.: Modeling a vibrating string
7.: Second order nonhomogeneous equations
8.: Gambler's ruin revisited
9.: A model of a national economy
10.: Dynamical systems with order greater than two
11.: Solutions involving trigonometric functions
Chapter 6: Introduction to nonlinear dynamical systems
1.: A model of population growth
2.: Using linearization to study stability
3.: Harvesting strategies
4.: More linearization
Chapter 7: Vectors and matrices
1.: Introduction to vectors and matrices
2.: Rules of linear algebra
3.: Gauss-Jordan elimination
4.: Determinants
5.: Inverse matrices
Chapter 8: Dynamical systems of several equations
1.: Introduction to dynamical systems of several equations
2.: Characteristic values
3.: First order dynamical systems of several equations
4.: Regular Markov chains
5.: Absorbing Markov chains
6.: Applications of absorbing Markov chains
7.: Long term behavior of solutions
8.: The heat equation
9.: Bibliography
1.: Modeling drugs in the bloodstream
2.: Terminology
3.: Equilibrium values
4.: Dynamic economic applications
5.: Applications of dynamics using spreadsheets
Chapter 2: First order dynamical systems
1.: Solutions to linear dynamical systems with applications
2.: Solutions to an affine dynamical system
3.: An introduction to genetics
4.: Solution to affine dynamical systems with applications
5.: Applications to finance
Chapter 3: Introduction to probability
1.: The multiplication to probability
2.: Introduction to probability
3.: Multistage tasks
4.: An introduction to Markov chains
Chapter 4: Nonhomogeneous dynamical systems
1.: Exponential terms
2.: Exponential terms, a special case
3.: Fractal geometry
4.: Polynomial terms
5.: Polynomial terms, a special case
Chapter 5: Higher order linear dynamical systems 183
1.: An introduction to second order linear equations
2.: Multiple roots
3.: The gambler's ruin
4.: Sex-linked genes
5.: Stability for second order affine equations
6.: Modeling a vibrating string
7.: Second order nonhomogeneous equations
8.: Gambler's ruin revisited
9.: A model of a national economy
10.: Dynamical systems with order greater than two
11.: Solutions involving trigonometric functions
Chapter 6: Introduction to nonlinear dynamical systems
1.: A model of population growth
2.: Using linearization to study stability
3.: Harvesting strategies
4.: More linearization
Chapter 7: Vectors and matrices
1.: Introduction to vectors and matrices
2.: Rules of linear algebra
3.: Gauss-Jordan elimination
4.: Determinants
5.: Inverse matrices
Chapter 8: Dynamical systems of several equations
1.: Introduction to dynamical systems of several equations
2.: Characteristic values
3.: First order dynamical systems of several equations
4.: Regular Markov chains
5.: Absorbing Markov chains
6.: Applications of absorbing Markov chains
7.: Long term behavior of solutions
8.: The heat equation
9.: Bibliography







