This advanced textbook for business statistics teaches, statistical analyses and research methods utilizing business case studies and financial data with the applications of Excel VBA, Python and R. Each chapter engages the reader with sample data drawn from individual stocks, stock indices, options, and futures. Now in its second edition, it has been expanded into two volumes, each of which is devoted to specific parts of the business analytics curriculum. To reflect the current age of data science and machine learning, the used applications have been updated from Minitab and SAS to Python…mehr
This advanced textbook for business statistics teaches, statistical analyses and research methods utilizing business case studies and financial data with the applications of Excel VBA, Python and R. Each chapter engages the reader with sample data drawn from individual stocks, stock indices, options, and futures. Now in its second edition, it has been expanded into two volumes, each of which is devoted to specific parts of the business analytics curriculum. To reflect the current age of data science and machine learning, the used applications have been updated from Minitab and SAS to Python and R, so that readers will be better prepared for the current industry. This second volume is designed for advanced courses in financial derivatives, risk management, and machine learning and financial management. In this volume we extensively use Excel, Python, and R to analyze the above-mentioned topics. It is also a comprehensive reference for active statistical finance scholars and business analysts who are looking to upgrade their toolkits. Readers can look to the first volume for dedicated content on financial statistics, and portfolio analysis.
Cheng-Few Lee is a Distinguished Professor of Finance at Rutgers Business School, where he once served as chairperson of the Department. He has maintained academic and consulting ties in Taiwan, Hong Kong, China and the United States for the past three decades and has been a consultant to many prominent groups including the American Insurance Group, the World Bank, and the United Nations. Lee founded the Review of Quantitative Finance and Accounting in 1990 and the Review of Pacific Basin Financial Markets and Policies in 1998, and continues to serve as managing editor for both journals. He was also a co-editor of the Financial Review (1985-1991) and the Quarterly Review of Economics and Business (1987-1989). Having published more than 200 articles in more than twenty different journals in finance, accounting, economics, statistics, and management, Lee has been ranked the most published finance professor worldwide during 1953-2008. Hong-Yi Chen is Assistant Professor at the NCCU College of Commerce. His research expertise is in investments, asset pricing, and corporate finance. He has co-authored several papers in journals such as Springer's Review of Quantitative Finance and Accounting, as well as Elsevier's Journal of Corporate Finance. John C. Lee is Director of the Center for PBBEF Research. A Microsoft Certified Professional in Microsoft Visual Basic and Microsoft Excel VBA, he has a Bachelors and Masters degree in accounting from the University of Illinois at Urbana-Champaign. Lee has worked over 20 years in both the business and technical fields as an accountant, auditor, systems analyst, as well as a business software developer. Formerly, the Senior Technology Officer at the Chase Manhattan Bank and Assistant Vice President at Merrill Lynch, he is also the author of the book on how to use MINITAB and Microsoft Excel to do statistical analysis. In addition, he also published Financial Analysis, Planning and Forecasting with Cheng-Few Lee and Alice Lee.
Inhaltsangabe
Chapter 1. Introduction.- Chapter 2. Introduction to Excel Programming.- Chapter 3. Introduction to VBA Programming.- Chapter 4. Professional Techniques Used in Excel and Excel VBA Techniques.- Chapter 5. Decision Tree Approach for Binomial Option Pricing Model.- Chapter 6. Microsoft Excel Approach to Estimating Alternative Option Pricing Models.- Chapter 7. Alternative Methods to Estimate Implied Variances.- Chapter 8. Greek Letters and Portfolio Insurance.- Chapter 9. Portfolio Analysis and Option Strategies.- Chapter 10. Alternative Simulation Methods and Their Applications.- Chapter 11. Linear Models for Regression.- Chapter 12. Kernel Linear Model.- Chapter 13. Neural Networks and Deep Learning.- Chapter 14. Applications of Alternative Machine Learning Methods for Credit Card Default Forecasting.- Chapter 15. An Application of Deep Neural Networks for Predicting Credit Card Delinquencies.- Chapter 16. Binomial/Trinomial Tree Option Pricing Using Python.- Chapter 17. Financial Ratios and its Applications.- Chapter 18. Time Value Money Analysis.- Chapter 19. Capital Budgeting under Certainty and Uncertainty.- Chapter 20. Financial Planning and Forecasting.- Chapter 21. Hedge Ratios: Theory and Applications.- Chapter 22. Application of simultaneous equation in finance research: Methods and empirical results.- Chapter 23. Using R Program to Estimate Binomial Option Pricing Model and Black & Scholes Option Pricing Model.
Chapter 1. Introduction.- Chapter 2. Introduction to Excel Programming.- Chapter 3. Introduction to VBA Programming.- Chapter 4. Professional Techniques Used in Excel and Excel VBA Techniques.- Chapter 5. Decision Tree Approach for Binomial Option Pricing Model.- Chapter 6. Microsoft Excel Approach to Estimating Alternative Option Pricing Models.- Chapter 7. Alternative Methods to Estimate Implied Variances.- Chapter 8. Greek Letters and Portfolio Insurance.- Chapter 9. Portfolio Analysis and Option Strategies.- Chapter 10. Alternative Simulation Methods and Their Applications.- Chapter 11. Linear Models for Regression.- Chapter 12. Kernel Linear Model.- Chapter 13. Neural Networks and Deep Learning.- Chapter 14. Applications of Alternative Machine Learning Methods for Credit Card Default Forecasting.- Chapter 15. An Application of Deep Neural Networks for Predicting Credit Card Delinquencies.- Chapter 16. Binomial/Trinomial Tree Option Pricing Using Python.- Chapter 17. Financial Ratios and its Applications.- Chapter 18. Time Value Money Analysis.- Chapter 19. Capital Budgeting under Certainty and Uncertainty.- Chapter 20. Financial Planning and Forecasting.- Chapter 21. Hedge Ratios: Theory and Applications.- Chapter 22. Application of simultaneous equation in finance research: Methods and empirical results.- Chapter 23. Using R Program to Estimate Binomial Option Pricing Model and Black & Scholes Option Pricing Model.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826