Oliver Caps
Evolution Equations in Scales of Banach Spaces
Oliver Caps
Evolution Equations in Scales of Banach Spaces
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The book provides a new functional-analytic approach to evolution equations by considering the abstract Cauchy problem in a scale of Banach spaces. Conditions are proved characterizing well-posedness of the linear, time-dependent Cauchy problem in scales of Banach spaces and implying local existence, uniqueness, and regularity of solutions of the quasilinear Cauchy problem.
Andere Kunden interessierten sich auch für
Jan ZimmerschiedÜber eine Faktorisierungsmethode für stochastische Evolutionsgleichungen in Banachräumen35,50 €
Petr HajekBiorthogonal Systems in Banach Spaces38,99 €
Petr HajekBiorthogonal Systems in Banach Spaces38,99 €
Banach Spaces and their Applications in Analysis138,99 €
Pilar CembranosBanach Spaces of Vector-Valued Functions21,99 €
Jesus M. F. CastilloThree-space Problems in Banach Space Theory39,99 €
Thomas SchusterRegularization Methods in Banach Spaces119,99 €-
-
-
The book provides a new functional-analytic approach to evolution equations by considering the abstract Cauchy problem in a scale of Banach spaces. Conditions are proved characterizing well-posedness of the linear, time-dependent Cauchy problem in scales of Banach spaces and implying local existence, uniqueness, and regularity of solutions of the quasilinear Cauchy problem.
Produktdetails
- Produktdetails
- Teubner-Texte zur Mathematik 140
- Verlag: Teubner
- Artikelnr. des Verlages: 978-3-519-00376-2
- Softcover reprint of the original 1st edition 2002
- Seitenzahl: 312
- Erscheinungstermin: 15. Juli 2002
- Englisch
- Abmessung: 240mm x 170mm x 17mm
- Gewicht: 542g
- ISBN-13: 9783519003762
- ISBN-10: 3519003767
- Artikelnr.: 10602382
- Herstellerkennzeichnung
- Vieweg+Teubner Verlag
- Abraham-Lincoln-Straße 46
- 65189 Wiesbaden
- ProductSafety@springernature.com
- Teubner-Texte zur Mathematik 140
- Verlag: Teubner
- Artikelnr. des Verlages: 978-3-519-00376-2
- Softcover reprint of the original 1st edition 2002
- Seitenzahl: 312
- Erscheinungstermin: 15. Juli 2002
- Englisch
- Abmessung: 240mm x 170mm x 17mm
- Gewicht: 542g
- ISBN-13: 9783519003762
- ISBN-10: 3519003767
- Artikelnr.: 10602382
- Herstellerkennzeichnung
- Vieweg+Teubner Verlag
- Abraham-Lincoln-Straße 46
- 65189 Wiesbaden
- ProductSafety@springernature.com
Dr. Oliver Caps, Universität Mainz
1 Tools from functional analysis.- 1.1 A brief introduction into the theory of semigroups.- 1.2 Selfadjoint operators.- 1.3 Generators of analytic semigroups and their powers.- 1.4 Fractional Powers of operators of positive type.- 1.5 Complex interpolation spaces.- 1.6 Time-dependent, linear evolution equations.- 2 Well-posedness of the time-dependent linear Cauchy problem.- 2.1 Properties of well-posed linear Cauchy problems in scales of Banach spaces.- 2.2 Scales of Banach spaces generated by families of closed operators.- 2.3 Commutator estimates and scales of Banach spaces.- 2.4 Characterization of well-posedness of the Cauchy problem...- 2.5 Sufficient conditions for well-posedness of the Cauchy problem.- 3 Quasilinear Evolution Equations.- 3.1 Semilinear Evolution Equations.- 3.2 Commutator estimates and quasilinear evolution equations.- 3.3 A local existence and uniqueness result for quasilinear evolution equations.- 3.4 Regularity for quasilinear evolution equations in scales of Banach spaces.- 4 Applications to linear, time-dependent evolution equations.- 4.1 Pseudodifferential operators and weighted Sobolev spaces.- 4.2 Pseudodifferential evolution equations in scales of weighted Sobolev spaces.- 4.3 Essential selfadjointness of pseudodifferential operators.- 4.4 Evolution equations in C0(IRn) and Feller semigroups.- 4.5 Evolution equations in scales of Lq-Sobolev spaces.- 4.6 An application to a degenerate-elliptic boundary value problem.- 4.7 Evolution equations on networks.- 5 Applications to quasilinear evolution equations.- 5.1 Estimates of Nash-Moser type for differential operators.- 5.2 Quasilinear evolution equations in Sobolev spaces.- 5.3 Degenerate Navier-Stokes equations.- 5.4 The generalized Kadomtsev-Petviashvili equation.- 5.5 Quasilinear evolution equations in scales of Lq-Sobolev spaces.- 5.6 First order hyperbolic evolution equations in the C0k-scale.
1 Tools from functional analysis.- 1.1 A brief introduction into the theory of semigroups.- 1.2 Selfadjoint operators.- 1.3 Generators of analytic semigroups and their powers.- 1.4 Fractional Powers of operators of positive type.- 1.5 Complex interpolation spaces.- 1.6 Time-dependent, linear evolution equations.- 2 Well-posedness of the time-dependent linear Cauchy problem.- 2.1 Properties of well-posed linear Cauchy problems in scales of Banach spaces.- 2.2 Scales of Banach spaces generated by families of closed operators.- 2.3 Commutator estimates and scales of Banach spaces.- 2.4 Characterization of well-posedness of the Cauchy problem...- 2.5 Sufficient conditions for well-posedness of the Cauchy problem.- 3 Quasilinear Evolution Equations.- 3.1 Semilinear Evolution Equations.- 3.2 Commutator estimates and quasilinear evolution equations.- 3.3 A local existence and uniqueness result for quasilinear evolution equations.- 3.4 Regularity for quasilinear evolution equations in scales of Banach spaces.- 4 Applications to linear, time-dependent evolution equations.- 4.1 Pseudodifferential operators and weighted Sobolev spaces.- 4.2 Pseudodifferential evolution equations in scales of weighted Sobolev spaces.- 4.3 Essential selfadjointness of pseudodifferential operators.- 4.4 Evolution equations in C0(IRn) and Feller semigroups.- 4.5 Evolution equations in scales of Lq-Sobolev spaces.- 4.6 An application to a degenerate-elliptic boundary value problem.- 4.7 Evolution equations on networks.- 5 Applications to quasilinear evolution equations.- 5.1 Estimates of Nash-Moser type for differential operators.- 5.2 Quasilinear evolution equations in Sobolev spaces.- 5.3 Degenerate Navier-Stokes equations.- 5.4 The generalized Kadomtsev-Petviashvili equation.- 5.5 Quasilinear evolution equations in scales of Lq-Sobolev spaces.- 5.6 First order hyperbolic evolution equations in the C0k-scale.







