Evolutionary Computation 1
Basic Algorithms and Operators
Herausgeber: Baeck, Thomas; Michalewicz, Z.; Fogel, D. B
Evolutionary Computation 1
Basic Algorithms and Operators
Herausgeber: Baeck, Thomas; Michalewicz, Z.; Fogel, D. B
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Offers information on algorithms and operators used in evolutionary computing. This book discusses the basic ideas that underlie the main paradigms of evolutionary algorithms, evolution strategies, evolutionary programming, and genetic programming. It is suitable for individual researchers, teachers, and students in the field.
Andere Kunden interessierten sich auch für
Mohamed Abdel-BassetSoft Computing for Smart Environments61,99 €
Richard E. NeapolitanArtificial Intelligence45,99 €
Research Advances in Intelligent Computing123,99 €
Nirupam ChakrabortiData-Driven Evolutionary Modeling in Materials Technology176,99 €
Cantú-PazGenetic and Evolutionary Computation - GECCO 200339,99 €
Erik CuevasMetaheuristic Computation with MATLAB®50,99 €
Evolutionary Computation 2020117,99 €-
-
-
Offers information on algorithms and operators used in evolutionary computing. This book discusses the basic ideas that underlie the main paradigms of evolutionary algorithms, evolution strategies, evolutionary programming, and genetic programming. It is suitable for individual researchers, teachers, and students in the field.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis Ltd
- Seitenzahl: 378
- Erscheinungstermin: 1. Januar 2000
- Englisch
- Abmessung: 234mm x 156mm x 20mm
- Gewicht: 580g
- ISBN-13: 9780750306645
- ISBN-10: 0750306645
- Artikelnr.: 21243602
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Taylor & Francis Ltd
- Seitenzahl: 378
- Erscheinungstermin: 1. Januar 2000
- Englisch
- Abmessung: 234mm x 156mm x 20mm
- Gewicht: 580g
- ISBN-13: 9780750306645
- ISBN-10: 0750306645
- Artikelnr.: 21243602
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Thomas Baeck, D.B Fogel, Z Michalewicz
PART 1 WHY EVOLUTIONARY COMPUTATION? 1. Introduction to evolutionary
computation. 2. Possible applications of evolutationary computation. 3.
Advantages (and disadvantages) of evolutionary computation over other
approaches. PART 2. EVOLUTIONARY COMPUTATION: THE BACKGROUND. 4. Principles
of evolutionary processes. 5. Principles of genetics. 6. A history of
evolutionary computation. PART 3 EVOLUTIONARY ALGORITHMS AND THEIR STANDARD
INSTANCES. 7. Introduction to evolutionary algorithms. 8. Genetic
algorithms. 9. Evolution strategies. 10. Evolutionary programming. 11.
Derivative methods in genetic programming. 12. Learning classifier systems.
13. Hybrid methods. PART 4. REPRESENTATIONS. 14. Introduction to
representations. 15. Binary strings. 16. Real-valued vectors. 17.
Permutations. 18. Finite-state representations. 19. Parse trees. 20.
Guidelines for a suitable encoding. 21. Other representations. PART 5.
SELECTION. 22. Introduction to selection. 23. Proportionary selection and
sampling algorithms. 24. Tournament selection. 25. Rank-based selection.
26. Boltzmann selection. 27. Other selection methods. 28. Generation gap
methods. 29. A comparison of selection mechanisms. 30. Interactive
evolution. PART 6. SEARCH OPERATORS. 31. Introduction to search operators.
32. Mutation operators. 33. Recombination. 34. Other operators. Index.
computation. 2. Possible applications of evolutationary computation. 3.
Advantages (and disadvantages) of evolutionary computation over other
approaches. PART 2. EVOLUTIONARY COMPUTATION: THE BACKGROUND. 4. Principles
of evolutionary processes. 5. Principles of genetics. 6. A history of
evolutionary computation. PART 3 EVOLUTIONARY ALGORITHMS AND THEIR STANDARD
INSTANCES. 7. Introduction to evolutionary algorithms. 8. Genetic
algorithms. 9. Evolution strategies. 10. Evolutionary programming. 11.
Derivative methods in genetic programming. 12. Learning classifier systems.
13. Hybrid methods. PART 4. REPRESENTATIONS. 14. Introduction to
representations. 15. Binary strings. 16. Real-valued vectors. 17.
Permutations. 18. Finite-state representations. 19. Parse trees. 20.
Guidelines for a suitable encoding. 21. Other representations. PART 5.
SELECTION. 22. Introduction to selection. 23. Proportionary selection and
sampling algorithms. 24. Tournament selection. 25. Rank-based selection.
26. Boltzmann selection. 27. Other selection methods. 28. Generation gap
methods. 29. A comparison of selection mechanisms. 30. Interactive
evolution. PART 6. SEARCH OPERATORS. 31. Introduction to search operators.
32. Mutation operators. 33. Recombination. 34. Other operators. Index.
PART 1 WHY EVOLUTIONARY COMPUTATION? 1. Introduction to evolutionary
computation. 2. Possible applications of evolutationary computation. 3.
Advantages (and disadvantages) of evolutionary computation over other
approaches. PART 2. EVOLUTIONARY COMPUTATION: THE BACKGROUND. 4. Principles
of evolutionary processes. 5. Principles of genetics. 6. A history of
evolutionary computation. PART 3 EVOLUTIONARY ALGORITHMS AND THEIR STANDARD
INSTANCES. 7. Introduction to evolutionary algorithms. 8. Genetic
algorithms. 9. Evolution strategies. 10. Evolutionary programming. 11.
Derivative methods in genetic programming. 12. Learning classifier systems.
13. Hybrid methods. PART 4. REPRESENTATIONS. 14. Introduction to
representations. 15. Binary strings. 16. Real-valued vectors. 17.
Permutations. 18. Finite-state representations. 19. Parse trees. 20.
Guidelines for a suitable encoding. 21. Other representations. PART 5.
SELECTION. 22. Introduction to selection. 23. Proportionary selection and
sampling algorithms. 24. Tournament selection. 25. Rank-based selection.
26. Boltzmann selection. 27. Other selection methods. 28. Generation gap
methods. 29. A comparison of selection mechanisms. 30. Interactive
evolution. PART 6. SEARCH OPERATORS. 31. Introduction to search operators.
32. Mutation operators. 33. Recombination. 34. Other operators. Index.
computation. 2. Possible applications of evolutationary computation. 3.
Advantages (and disadvantages) of evolutionary computation over other
approaches. PART 2. EVOLUTIONARY COMPUTATION: THE BACKGROUND. 4. Principles
of evolutionary processes. 5. Principles of genetics. 6. A history of
evolutionary computation. PART 3 EVOLUTIONARY ALGORITHMS AND THEIR STANDARD
INSTANCES. 7. Introduction to evolutionary algorithms. 8. Genetic
algorithms. 9. Evolution strategies. 10. Evolutionary programming. 11.
Derivative methods in genetic programming. 12. Learning classifier systems.
13. Hybrid methods. PART 4. REPRESENTATIONS. 14. Introduction to
representations. 15. Binary strings. 16. Real-valued vectors. 17.
Permutations. 18. Finite-state representations. 19. Parse trees. 20.
Guidelines for a suitable encoding. 21. Other representations. PART 5.
SELECTION. 22. Introduction to selection. 23. Proportionary selection and
sampling algorithms. 24. Tournament selection. 25. Rank-based selection.
26. Boltzmann selection. 27. Other selection methods. 28. Generation gap
methods. 29. A comparison of selection mechanisms. 30. Interactive
evolution. PART 6. SEARCH OPERATORS. 31. Introduction to search operators.
32. Mutation operators. 33. Recombination. 34. Other operators. Index.







