Explainable and Transparent AI and Multi-Agent Systems
5th International Workshop, EXTRAAMAS 2023, London, UK, May 29, 2023, Revised Selected Papers
Herausgegeben:Calvaresi, Davide; Najjar, Amro; Omicini, Andrea; Aydogan, Reyhan; Carli, Rachele; Ciatto, Giovanni; Mualla, Yazan; Främling, Kary
Explainable and Transparent AI and Multi-Agent Systems
5th International Workshop, EXTRAAMAS 2023, London, UK, May 29, 2023, Revised Selected Papers
Herausgegeben:Calvaresi, Davide; Najjar, Amro; Omicini, Andrea; Aydogan, Reyhan; Carli, Rachele; Ciatto, Giovanni; Mualla, Yazan; Främling, Kary
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This volume LNCS 14127 constitutes the refereed proceedings of the 5th International Workshop, EXTRAAMAS 2023, held in London, UK, in May 2023. The 15 full papers presented together with 1 short paper were carefully reviewed and selected from 26 submissions. The workshop focuses on Explainable Agents and multi-agent systems; Explainable Machine Learning; and Cross-domain applied XAI.
Andere Kunden interessierten sich auch für
Explainable and Transparent AI and Multi-Agent Systems44,99 €
Explainable, Trustworthy, and Responsible AI and Multi-Agent Systems45,99 €
Explainable and Transparent AI and Multi-Agent Systems39,99 €
Explainable and Transparent AI and Multi-Agent Systems65,99 €
Rules and Reasoning49,99 €
Progress in Artificial Intelligence51,99 €
Progress in Artificial Intelligence50,99 €-
-
-
This volume LNCS 14127 constitutes the refereed proceedings of the 5th International Workshop, EXTRAAMAS 2023, held in London, UK, in May 2023.
The 15 full papers presented together with 1 short paper were carefully reviewed and selected from 26 submissions. The workshop focuses on Explainable Agents and multi-agent systems; Explainable Machine Learning; and Cross-domain applied XAI.
The 15 full papers presented together with 1 short paper were carefully reviewed and selected from 26 submissions. The workshop focuses on Explainable Agents and multi-agent systems; Explainable Machine Learning; and Cross-domain applied XAI.
Produktdetails
- Produktdetails
- Lecture Notes in Computer Science 14127
- Verlag: Springer / Springer Nature Switzerland / Springer, Berlin
- Artikelnr. des Verlages: 978-3-031-40877-9
- 1st ed. 2023
- Seitenzahl: 296
- Erscheinungstermin: 5. September 2023
- Englisch
- Abmessung: 235mm x 155mm x 17mm
- Gewicht: 452g
- ISBN-13: 9783031408779
- ISBN-10: 3031408772
- Artikelnr.: 68372963
- Herstellerkennzeichnung
- Springer Nature c/o IBS
- Benzstrasse 21
- 48619 Heek
- Tanja.Keller@springer.com
- Lecture Notes in Computer Science 14127
- Verlag: Springer / Springer Nature Switzerland / Springer, Berlin
- Artikelnr. des Verlages: 978-3-031-40877-9
- 1st ed. 2023
- Seitenzahl: 296
- Erscheinungstermin: 5. September 2023
- Englisch
- Abmessung: 235mm x 155mm x 17mm
- Gewicht: 452g
- ISBN-13: 9783031408779
- ISBN-10: 3031408772
- Artikelnr.: 68372963
- Herstellerkennzeichnung
- Springer Nature c/o IBS
- Benzstrasse 21
- 48619 Heek
- Tanja.Keller@springer.com
Explainable Agents and multi-agent systems.- Mining and Validating Belief-based Agent Explanations.- Evaluating a mechanism for explaining BDI agent behaviour.- A General-Purpose Protocol for Multi-Agent based Explanations.- Dialogue Explanations for Rules-based AI Systems.- Estimating Causal Responsibility for Explaining Autonomous Behavior.- Explainable Machine Learning.- The Quarrel of Local Post-hoc Explainers for Moral Values Classification in Natural Language Processing.- Bottom-Up and Top-Down Workflows for Hypercube- and Clustering-based Knowledge Extractors.- Imperative Action Masking for Safe Exploration in Reinforcement Learning.- Reinforcement Learning in Cyclic Environmental Change for Non-Communicative Agents: A Theoretical Approach.- Inherently Interpretable Deep Reinforcement Learning through Online Mimicking.- Counterfactual, Contrastive, and Hierarchical Explanations with Contextual Importance and Utility.- Cross-domain applied XAI.- Explanation Generation via Decompositional Rules Extraction for Head and Neck Cancer Classification.- Metrics for Evaluating Explainable Recommender Systems.- Leveraging Imperfect Explanations for Plan Recognition Problems.- Reinterpreting Vulnerability to Tackle Deception in Principles-Based XAI for Human-Computer Interaction.- Using Cognitive Models and Wearables to Diagnose and Predict Dementia Patient Behaviour.
Explainable Agents and multi-agent systems.- Mining and Validating Belief-based Agent Explanations.- Evaluating a mechanism for explaining BDI agent behaviour.- A General-Purpose Protocol for Multi-Agent based Explanations.- Dialogue Explanations for Rules-based AI Systems.- Estimating Causal Responsibility for Explaining Autonomous Behavior.- Explainable Machine Learning.- The Quarrel of Local Post-hoc Explainers for Moral Values Classification in Natural Language Processing.- Bottom-Up and Top-Down Workflows for Hypercube- and Clustering-based Knowledge Extractors.- Imperative Action Masking for Safe Exploration in Reinforcement Learning.- Reinforcement Learning in Cyclic Environmental Change for Non-Communicative Agents: A Theoretical Approach.- Inherently Interpretable Deep Reinforcement Learning through Online Mimicking.- Counterfactual, Contrastive, and Hierarchical Explanations with Contextual Importance and Utility.- Cross-domain applied XAI.- Explanation Generation via Decompositional Rules Extraction for Head and Neck Cancer Classification.- Metrics for Evaluating Explainable Recommender Systems.- Leveraging Imperfect Explanations for Plan Recognition Problems.- Reinterpreting Vulnerability to Tackle Deception in Principles-Based XAI for Human-Computer Interaction.- Using Cognitive Models and Wearables to Diagnose and Predict Dementia Patient Behaviour.







