Michael P. Paidoussis (Professor Emeritus of Mechanical Engineering
Fluid-Structure Interactions
Slender Structures and Axial Flow
Schade – dieser Artikel ist leider ausverkauft. Sobald wir wissen, ob und wann der Artikel wieder verfügbar ist, informieren wir Sie an dieser Stelle.
Michael P. Paidoussis (Professor Emeritus of Mechanical Engineering
Fluid-Structure Interactions
Slender Structures and Axial Flow
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Fluid-structure interaction (FSI) is the interaction of some movable or deformable structure with an internal or surrounding fluid flow. This book covers the fundamentals and mechanisms giving rise to flow-induced vibration, with a particular focus on the challenges associated with pipes conveying fluid.
Andere Kunden interessierten sich auch für
- Pijush K. Kundu (U.S.A. Nova University (deceased) )Fluid Mechanics101,99 €
- Fluid-Structure Interactions in Low-Reynolds-Number Flows248,99 €
- Kip S. ThorneModern Classical Physics134,99 €
- Juan H. VeraClassical and Molecular Thermodynamics of Fluid Systems159,99 €
- Lakshmi H. KanthaSmall Scale Processes in Geophysical Fluid Flows145,99 €
- David Rubenstein (Associate Professor and Graduate Program DirectorBiofluid Mechanics137,99 €
- Bart Merci (Belgium Ghent University)Fluid Mechanics Aspects of Fire and Smoke Dynamics in Enclosures87,99 €
-
-
Fluid-structure interaction (FSI) is the interaction of some movable or deformable structure with an internal or surrounding fluid flow. This book covers the fundamentals and mechanisms giving rise to flow-induced vibration, with a particular focus on the challenges associated with pipes conveying fluid.
Produktdetails
- Produktdetails
- Verlag: Elsevier Science Publishing Co Inc
- 2 ed
- Seitenzahl: 888
- Erscheinungstermin: 11. Februar 2014
- Englisch
- Abmessung: 241mm x 192mm x 53mm
- Gewicht: 1916g
- ISBN-13: 9780123973122
- ISBN-10: 0123973120
- Artikelnr.: 36868991
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Elsevier Science Publishing Co Inc
- 2 ed
- Seitenzahl: 888
- Erscheinungstermin: 11. Februar 2014
- Englisch
- Abmessung: 241mm x 192mm x 53mm
- Gewicht: 1916g
- ISBN-13: 9780123973122
- ISBN-10: 0123973120
- Artikelnr.: 36868991
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Michael Païdoussis is the Thomas Workman Emeritus Professor of Mechanical Engineering at McGill University and a Fellow of the Canadian Society for Mechanical Engineering (CSME), the Institution of Mechanical Engineers (IMechE), the American Society of Mechanical Engineers (ASME), the Royal Society of Canada, the Canadian Academy of Engineering and the American Academy of Mechanics (AAM). He is the Founding Editor of the Journal of Fluids and Structures, as of 1986. He has won the ASME Fluids Engineering Award in 1999 and the CANCAM prize in 1995. His principal research interests are in fluid-structure interactions, flow-induced vibrations, aero- and hydroelasticity, dynamics, nonlinear dynamics and chaos, all areas in which he is recognized as a leading expert.
1. Concepts, Definitions and Methods2. Pipes Conveying Fluid: Linear
Dynamics I3. Pipes Conveying Fluid: Linear Dynamics II4. Pipes Conveying
Fluid: Nonlinear and Chaotic Dynamics5. Curved Pipes Conveying Fluid6.
Cylindrical Shells Containing or Immersed in Flow: Basic Dynamics
Appendix A: A First-Principles Derivation of the Equation of Motion of a
Pipe Conveying FluidAppendix B: Analytical Evaluation of bsr, csr and dsr
Appendix C: Destabilization by Damping: T. Brooke Benjamin's WorkAppendix
D: Experimental Methods for Elastomer PipesAppendix E: Timoshenko Equations
of Motion and Associated AnalysisAppendix F: Some of the Basic Methods for
Nonlinear DynamicsAppendix G: Newtonian Derivation of Nonlinear Equations
of Motion of a pipe Conveying FluidAppendix H: Nonlinear Dynamics Theory
Applied to a Pipe Conveying FluidAppendix I: The Fractal Dimension from the
Experimental Pipe-Vibration SignalAppendix J: Detailed Analysis for the
Derivation of the Equations of Motion of Chapter 6Appendix K: Matrices for
the Analysis of an Extensible Curved Pipe Conveying FluidAppendix L:
Matrices in Hybrid Analytical/Finite-Element Method of Lakis et al.
Appendix M: Anisotropic ShellsAppendix N: Nonlinear Motions of a Shell
Conveying Fluid
Dynamics I3. Pipes Conveying Fluid: Linear Dynamics II4. Pipes Conveying
Fluid: Nonlinear and Chaotic Dynamics5. Curved Pipes Conveying Fluid6.
Cylindrical Shells Containing or Immersed in Flow: Basic Dynamics
Appendix A: A First-Principles Derivation of the Equation of Motion of a
Pipe Conveying FluidAppendix B: Analytical Evaluation of bsr, csr and dsr
Appendix C: Destabilization by Damping: T. Brooke Benjamin's WorkAppendix
D: Experimental Methods for Elastomer PipesAppendix E: Timoshenko Equations
of Motion and Associated AnalysisAppendix F: Some of the Basic Methods for
Nonlinear DynamicsAppendix G: Newtonian Derivation of Nonlinear Equations
of Motion of a pipe Conveying FluidAppendix H: Nonlinear Dynamics Theory
Applied to a Pipe Conveying FluidAppendix I: The Fractal Dimension from the
Experimental Pipe-Vibration SignalAppendix J: Detailed Analysis for the
Derivation of the Equations of Motion of Chapter 6Appendix K: Matrices for
the Analysis of an Extensible Curved Pipe Conveying FluidAppendix L:
Matrices in Hybrid Analytical/Finite-Element Method of Lakis et al.
Appendix M: Anisotropic ShellsAppendix N: Nonlinear Motions of a Shell
Conveying Fluid
1. Concepts, Definitions and Methods2. Pipes Conveying Fluid: Linear
Dynamics I3. Pipes Conveying Fluid: Linear Dynamics II4. Pipes Conveying
Fluid: Nonlinear and Chaotic Dynamics5. Curved Pipes Conveying Fluid6.
Cylindrical Shells Containing or Immersed in Flow: Basic Dynamics
Appendix A: A First-Principles Derivation of the Equation of Motion of a
Pipe Conveying FluidAppendix B: Analytical Evaluation of bsr, csr and dsr
Appendix C: Destabilization by Damping: T. Brooke Benjamin's WorkAppendix
D: Experimental Methods for Elastomer PipesAppendix E: Timoshenko Equations
of Motion and Associated AnalysisAppendix F: Some of the Basic Methods for
Nonlinear DynamicsAppendix G: Newtonian Derivation of Nonlinear Equations
of Motion of a pipe Conveying FluidAppendix H: Nonlinear Dynamics Theory
Applied to a Pipe Conveying FluidAppendix I: The Fractal Dimension from the
Experimental Pipe-Vibration SignalAppendix J: Detailed Analysis for the
Derivation of the Equations of Motion of Chapter 6Appendix K: Matrices for
the Analysis of an Extensible Curved Pipe Conveying FluidAppendix L:
Matrices in Hybrid Analytical/Finite-Element Method of Lakis et al.
Appendix M: Anisotropic ShellsAppendix N: Nonlinear Motions of a Shell
Conveying Fluid
Dynamics I3. Pipes Conveying Fluid: Linear Dynamics II4. Pipes Conveying
Fluid: Nonlinear and Chaotic Dynamics5. Curved Pipes Conveying Fluid6.
Cylindrical Shells Containing or Immersed in Flow: Basic Dynamics
Appendix A: A First-Principles Derivation of the Equation of Motion of a
Pipe Conveying FluidAppendix B: Analytical Evaluation of bsr, csr and dsr
Appendix C: Destabilization by Damping: T. Brooke Benjamin's WorkAppendix
D: Experimental Methods for Elastomer PipesAppendix E: Timoshenko Equations
of Motion and Associated AnalysisAppendix F: Some of the Basic Methods for
Nonlinear DynamicsAppendix G: Newtonian Derivation of Nonlinear Equations
of Motion of a pipe Conveying FluidAppendix H: Nonlinear Dynamics Theory
Applied to a Pipe Conveying FluidAppendix I: The Fractal Dimension from the
Experimental Pipe-Vibration SignalAppendix J: Detailed Analysis for the
Derivation of the Equations of Motion of Chapter 6Appendix K: Matrices for
the Analysis of an Extensible Curved Pipe Conveying FluidAppendix L:
Matrices in Hybrid Analytical/Finite-Element Method of Lakis et al.
Appendix M: Anisotropic ShellsAppendix N: Nonlinear Motions of a Shell
Conveying Fluid