1 Logical Preliminaries.- 1.1 Basic notions.- 1.2 t-norms and ?-operators.- 1.3 t-norm based connectives.- 2 Basic fuzzy set theory.- 2.1 Set algebra for fuzzy sets.- 2.2 Fuzzy relations.- 2.3 The full image under a relation.- 2.4 Special types of fuzzy relations.- 2.5 Graded properties of fuzzy relations.- 3 Set equations with fuzzy sets.- 3.1 Fuzzy equations and some of their applications.- 3.2 Solvability of fuzzy relational equations.- 3.3 Solvability of fuzzy arithmetical equations.- 3.4 Solvability of systems of fuzzy equations.- 3.5 Solvability degrees and approximate solutions.- 3.6…mehr
1 Logical Preliminaries.- 1.1 Basic notions.- 1.2 t-norms and ?-operators.- 1.3 t-norm based connectives.- 2 Basic fuzzy set theory.- 2.1 Set algebra for fuzzy sets.- 2.2 Fuzzy relations.- 2.3 The full image under a relation.- 2.4 Special types of fuzzy relations.- 2.5 Graded properties of fuzzy relations.- 3 Set equations with fuzzy sets.- 3.1 Fuzzy equations and some of their applications.- 3.2 Solvability of fuzzy relational equations.- 3.3 Solvability of fuzzy arithmetical equations.- 3.4 Solvability of systems of fuzzy equations.- 3.5 Solvability degrees and approximate solutions.- 3.6 Towards more difficult equations.- 4 Fuzzy controllers.- 4.1 The construction of fuzzy controllers.- 4.2 The problem of interaction.- 4.3 Manipulation of fuzzy data.- 5 Methodological issues.- 5.1 Comparison of fuzzy sets.- 5.2 Approximate solutions.- 5.3 Fuzzy equations for processing fuzzy data.- 5.4 Evaluation of fuzzy models.- 5.5 Controllability and predictability.
Der Verfasser ist Ordinarius für Nichtklassische und Mathematische Logik an der Universität Leipzig und war 1992 für 6 Monate Gast an der TH Darmstadt. Er arbeitet seit mehr als 2 Jahrzehnten auf dem Gebiet der fuzzy sets, gehört zum Editorial Board der Zeitschrift FUZZY SETS AND SYSTEMS und erhielt 1992 den Forschungspreis Technische Kommunikation der Stuttgarter SEL-Stiftung.
Inhaltsangabe
1 Logical Preliminaries.- 1.1 Basic notions.- 1.2 t-norms and ?-operators.- 1.3 t-norm based connectives.- 2 Basic fuzzy set theory.- 2.1 Set algebra for fuzzy sets.- 2.2 Fuzzy relations.- 2.3 The full image under a relation.- 2.4 Special types of fuzzy relations.- 2.5 Graded properties of fuzzy relations.- 3 Set equations with fuzzy sets.- 3.1 Fuzzy equations and some of their applications.- 3.2 Solvability of fuzzy relational equations.- 3.3 Solvability of fuzzy arithmetical equations.- 3.4 Solvability of systems of fuzzy equations.- 3.5 Solvability degrees and approximate solutions.- 3.6 Towards more difficult equations.- 4 Fuzzy controllers.- 4.1 The construction of fuzzy controllers.- 4.2 The problem of interaction.- 4.3 Manipulation of fuzzy data.- 5 Methodological issues.- 5.1 Comparison of fuzzy sets.- 5.2 Approximate solutions.- 5.3 Fuzzy equations for processing fuzzy data.- 5.4 Evaluation of fuzzy models.- 5.5 Controllability and predictability.
1 Logical Preliminaries.- 1.1 Basic notions.- 1.2 t-norms and ?-operators.- 1.3 t-norm based connectives.- 2 Basic fuzzy set theory.- 2.1 Set algebra for fuzzy sets.- 2.2 Fuzzy relations.- 2.3 The full image under a relation.- 2.4 Special types of fuzzy relations.- 2.5 Graded properties of fuzzy relations.- 3 Set equations with fuzzy sets.- 3.1 Fuzzy equations and some of their applications.- 3.2 Solvability of fuzzy relational equations.- 3.3 Solvability of fuzzy arithmetical equations.- 3.4 Solvability of systems of fuzzy equations.- 3.5 Solvability degrees and approximate solutions.- 3.6 Towards more difficult equations.- 4 Fuzzy controllers.- 4.1 The construction of fuzzy controllers.- 4.2 The problem of interaction.- 4.3 Manipulation of fuzzy data.- 5 Methodological issues.- 5.1 Comparison of fuzzy sets.- 5.2 Approximate solutions.- 5.3 Fuzzy equations for processing fuzzy data.- 5.4 Evaluation of fuzzy models.- 5.5 Controllability and predictability.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826