Canarutto
GAUGE FIELD THEORY WITHOUT GROUPS C
Canarutto
GAUGE FIELD THEORY WITHOUT GROUPS C
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Gauge Field theory in Natural Geometric Language addresses the need to clarify basic mathematical concepts at the crossroad between gravitation and quantum physics.
Andere Kunden interessierten sich auch für
Lalaonirina R. RakotomananaCovariance and Gauge Invariance in Continuum Physics83,99 €
Anke TröltzschActive sets in bound-constrained optimization without derivatives45,99 €
Lalaonirina R. RakotomananaCovariance and Gauge Invariance in Continuum Physics83,99 €
Geoffrey HellmanMathematics Without Numbers67,99 €
John BredakisUnderstanding the Zeta function, without getting lost in the tricky paths of advanced complex analysis17,99 €
Roxana GrigorasOn Assumptions and Hypotheses in Mathematising by Tasks without Numbers65,45 €
Lowis D'Aguilar JacksonAccented Five-Figure Logarithms Of Numbers From 1 To 99,999 Without Differences28,99 €-
-
-
Gauge Field theory in Natural Geometric Language addresses the need to clarify basic mathematical concepts at the crossroad between gravitation and quantum physics.
Produktdetails
- Produktdetails
- Verlag: ACADEMIC
- Seitenzahl: 362
- Erscheinungstermin: 5. Oktober 2020
- Englisch
- Abmessung: 240mm x 161mm x 24mm
- Gewicht: 708g
- ISBN-13: 9780198861492
- ISBN-10: 0198861494
- Artikelnr.: 60206891
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: ACADEMIC
- Seitenzahl: 362
- Erscheinungstermin: 5. Oktober 2020
- Englisch
- Abmessung: 240mm x 161mm x 24mm
- Gewicht: 708g
- ISBN-13: 9780198861492
- ISBN-10: 0198861494
- Artikelnr.: 60206891
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Daniel Canarutto is a mathematical physicist interested in the clarification of mathematical notions of fundamental physics, using natural differential geometry as the main tool. His earlier work includes results about the geometry of spacetime singularities. Since 1993 he has focused on basic notions underlying quantum physics, revisiting several aspects within partly original approaches to spinor geometry, distributional bundles and other geometry-related topics.
1: Bundle prolongations and connections
2: Special algebraic notions
3: Spinors and Minkowski space
4: Spinor bundles and spacetime geometry
5: Classical gauge field theory
6: Gauge field theory and gravitation
7: Optical geometry
8: Electroweak geometry and fields
9: First-order theory of fields with arbitrary spin
10: Infinitesimal deformations of ECD fields
11: Generalised maps
12: Special generalised densities on Minkowski spacetime
13: Multi-particle spaces
14: Bundles of quantum states
15: Quantum bundles
16: Quantum fields
17: Detectors
18: Free quantum fields
19: Electroweak extensions
20: Basic notions in particle physics
21: Scattering matrix computations
22: Quantum electrodynamics
23: On gauge freedom and interactions
2: Special algebraic notions
3: Spinors and Minkowski space
4: Spinor bundles and spacetime geometry
5: Classical gauge field theory
6: Gauge field theory and gravitation
7: Optical geometry
8: Electroweak geometry and fields
9: First-order theory of fields with arbitrary spin
10: Infinitesimal deformations of ECD fields
11: Generalised maps
12: Special generalised densities on Minkowski spacetime
13: Multi-particle spaces
14: Bundles of quantum states
15: Quantum bundles
16: Quantum fields
17: Detectors
18: Free quantum fields
19: Electroweak extensions
20: Basic notions in particle physics
21: Scattering matrix computations
22: Quantum electrodynamics
23: On gauge freedom and interactions
1: Bundle prolongations and connections
2: Special algebraic notions
3: Spinors and Minkowski space
4: Spinor bundles and spacetime geometry
5: Classical gauge field theory
6: Gauge field theory and gravitation
7: Optical geometry
8: Electroweak geometry and fields
9: First-order theory of fields with arbitrary spin
10: Infinitesimal deformations of ECD fields
11: Generalised maps
12: Special generalised densities on Minkowski spacetime
13: Multi-particle spaces
14: Bundles of quantum states
15: Quantum bundles
16: Quantum fields
17: Detectors
18: Free quantum fields
19: Electroweak extensions
20: Basic notions in particle physics
21: Scattering matrix computations
22: Quantum electrodynamics
23: On gauge freedom and interactions
2: Special algebraic notions
3: Spinors and Minkowski space
4: Spinor bundles and spacetime geometry
5: Classical gauge field theory
6: Gauge field theory and gravitation
7: Optical geometry
8: Electroweak geometry and fields
9: First-order theory of fields with arbitrary spin
10: Infinitesimal deformations of ECD fields
11: Generalised maps
12: Special generalised densities on Minkowski spacetime
13: Multi-particle spaces
14: Bundles of quantum states
15: Quantum bundles
16: Quantum fields
17: Detectors
18: Free quantum fields
19: Electroweak extensions
20: Basic notions in particle physics
21: Scattering matrix computations
22: Quantum electrodynamics
23: On gauge freedom and interactions







