- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Quantum calculus is the modern name for the investigation of calculus without limits. The quantum calculus or q-calculus began with FH Jackson in the early twentieth century, but this kind of calculus had already been worked out by Euler and Jacobi.
Andere Kunden interessierten sich auch für
- Julien GuillodPython Programming for Mathematics65,99 €
- Roberto Alicandro (Universita degli Studi di Napoli 'Federico II')Discrete Variational Problems with Interfaces115,99 €
- Dimitrios MitsotakisComputational Mathematics122,99 €
- Vladislav BukshtynovComputational Optimization119,99 €
- Joachim GwinnerUncertainty Quantification in Variational Inequalities66,99 €
- Stephen LynchA Simple Introduction to Python47,99 €
- Robert E. White (North Carolina State University, Raleigh, USA)Computational Linear Algebra72,99 €
-
-
-
Quantum calculus is the modern name for the investigation of calculus without limits. The quantum calculus or q-calculus began with FH Jackson in the early twentieth century, but this kind of calculus had already been worked out by Euler and Jacobi.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Advances in Applied Mathematics
- Verlag: Taylor & Francis Ltd
- Seitenzahl: 258
- Erscheinungstermin: 19. Dezember 2024
- Englisch
- Abmessung: 232mm x 156mm x 16mm
- Gewicht: 414g
- ISBN-13: 9781032900698
- ISBN-10: 1032900695
- Artikelnr.: 71235674
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Advances in Applied Mathematics
- Verlag: Taylor & Francis Ltd
- Seitenzahl: 258
- Erscheinungstermin: 19. Dezember 2024
- Englisch
- Abmessung: 232mm x 156mm x 16mm
- Gewicht: 414g
- ISBN-13: 9781032900698
- ISBN-10: 1032900695
- Artikelnr.: 71235674
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Svetlin G. Georgiev is a mathematician who has worked in various areas of mathematics. He currently focuses on harmonic analysis, functional analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, integral equations, and dynamic calculus on time scales. Khaled Zennir earned his PhD in mathematics in 2013 from Sidi Bel Abbès University, Algeria. In 2015, he received his highest diploma in Habilitation in mathematics from Constantine University, Algeria. He is currently an assistant professor at Qassim University in the Kingdom of Saudi Arabia. His research interests lie in the subjects of nonlinear hyperbolic partial differential equations: global existence, blowup, and longtime behavior.
1. Elements of the Multimensional General Quantum Calculus
1.1 The Multidimensional General Quantum Calculus
1.2 Line Integrals
1.3 The Green Formula
1.4 Advanced Practical Problems
2. ß-Differential Systems
2.1 Structure of ß-Differential Systems
2.2 ß-Matrix Exponential Function
2.3 The ß-Liouville Theorem
2.4 Constant Coefficients
2.5 Nonlinear Systems
2.6 Advanced Practical Problems
3. Functionals
3.1 Definition for Functionals
3.2 Self-Adjoint Second Order Matrix Equations
3.3 The Jacobi Condition
3.4 Sturmian Theory
4. Linear Hamiltonian Dynamic Systems
4.1 Linear Symplectic Dynamic Systems
4.2 Hamiltonian Systems
4.3 Conjoined Bases
4.4 Riccati Equations
4.5 The Picone Identity
4.6 "Big" Linear Hamiltonian Systems
4.7 Positivity of Quadratic Functionals
5. The First Variation
5.1 The Dubois-Reymond Lemma
5.2 The Variational Problem
5.3 The Euler-Lagrange Equation
5.4 The Legendre Condition
5.5 The Jacobi Condition
5.6 Advanced Practical Problems
6. Higher Order Calculus of Variations
6.1 Statement of the Variational Problem
6.2 The Euler Equation
6.3 Advanced Practical Problems
7. Double Integral Calculus of Variations
7.1 Statement of the Variational Problem
7.2 First and Second Variation
7.3 The Euler Condition
7.4 Advanced Practical Problems
8. The Noether Second Theorem
8.1 Invariance under Transformations
8.2 The Noether Second Theorem without Transformations of Time
8.3 The Noether Second Theorem with Transformations of Time
8.4 The Noether Second Theorem-Double Delta Integral Case
References
Index
1.1 The Multidimensional General Quantum Calculus
1.2 Line Integrals
1.3 The Green Formula
1.4 Advanced Practical Problems
2. ß-Differential Systems
2.1 Structure of ß-Differential Systems
2.2 ß-Matrix Exponential Function
2.3 The ß-Liouville Theorem
2.4 Constant Coefficients
2.5 Nonlinear Systems
2.6 Advanced Practical Problems
3. Functionals
3.1 Definition for Functionals
3.2 Self-Adjoint Second Order Matrix Equations
3.3 The Jacobi Condition
3.4 Sturmian Theory
4. Linear Hamiltonian Dynamic Systems
4.1 Linear Symplectic Dynamic Systems
4.2 Hamiltonian Systems
4.3 Conjoined Bases
4.4 Riccati Equations
4.5 The Picone Identity
4.6 "Big" Linear Hamiltonian Systems
4.7 Positivity of Quadratic Functionals
5. The First Variation
5.1 The Dubois-Reymond Lemma
5.2 The Variational Problem
5.3 The Euler-Lagrange Equation
5.4 The Legendre Condition
5.5 The Jacobi Condition
5.6 Advanced Practical Problems
6. Higher Order Calculus of Variations
6.1 Statement of the Variational Problem
6.2 The Euler Equation
6.3 Advanced Practical Problems
7. Double Integral Calculus of Variations
7.1 Statement of the Variational Problem
7.2 First and Second Variation
7.3 The Euler Condition
7.4 Advanced Practical Problems
8. The Noether Second Theorem
8.1 Invariance under Transformations
8.2 The Noether Second Theorem without Transformations of Time
8.3 The Noether Second Theorem with Transformations of Time
8.4 The Noether Second Theorem-Double Delta Integral Case
References
Index
1. Elements of the Multimensional General Quantum Calculus
1.1 The Multidimensional General Quantum Calculus
1.2 Line Integrals
1.3 The Green Formula
1.4 Advanced Practical Problems
2. ß-Differential Systems
2.1 Structure of ß-Differential Systems
2.2 ß-Matrix Exponential Function
2.3 The ß-Liouville Theorem
2.4 Constant Coefficients
2.5 Nonlinear Systems
2.6 Advanced Practical Problems
3. Functionals
3.1 Definition for Functionals
3.2 Self-Adjoint Second Order Matrix Equations
3.3 The Jacobi Condition
3.4 Sturmian Theory
4. Linear Hamiltonian Dynamic Systems
4.1 Linear Symplectic Dynamic Systems
4.2 Hamiltonian Systems
4.3 Conjoined Bases
4.4 Riccati Equations
4.5 The Picone Identity
4.6 "Big" Linear Hamiltonian Systems
4.7 Positivity of Quadratic Functionals
5. The First Variation
5.1 The Dubois-Reymond Lemma
5.2 The Variational Problem
5.3 The Euler-Lagrange Equation
5.4 The Legendre Condition
5.5 The Jacobi Condition
5.6 Advanced Practical Problems
6. Higher Order Calculus of Variations
6.1 Statement of the Variational Problem
6.2 The Euler Equation
6.3 Advanced Practical Problems
7. Double Integral Calculus of Variations
7.1 Statement of the Variational Problem
7.2 First and Second Variation
7.3 The Euler Condition
7.4 Advanced Practical Problems
8. The Noether Second Theorem
8.1 Invariance under Transformations
8.2 The Noether Second Theorem without Transformations of Time
8.3 The Noether Second Theorem with Transformations of Time
8.4 The Noether Second Theorem-Double Delta Integral Case
References
Index
1.1 The Multidimensional General Quantum Calculus
1.2 Line Integrals
1.3 The Green Formula
1.4 Advanced Practical Problems
2. ß-Differential Systems
2.1 Structure of ß-Differential Systems
2.2 ß-Matrix Exponential Function
2.3 The ß-Liouville Theorem
2.4 Constant Coefficients
2.5 Nonlinear Systems
2.6 Advanced Practical Problems
3. Functionals
3.1 Definition for Functionals
3.2 Self-Adjoint Second Order Matrix Equations
3.3 The Jacobi Condition
3.4 Sturmian Theory
4. Linear Hamiltonian Dynamic Systems
4.1 Linear Symplectic Dynamic Systems
4.2 Hamiltonian Systems
4.3 Conjoined Bases
4.4 Riccati Equations
4.5 The Picone Identity
4.6 "Big" Linear Hamiltonian Systems
4.7 Positivity of Quadratic Functionals
5. The First Variation
5.1 The Dubois-Reymond Lemma
5.2 The Variational Problem
5.3 The Euler-Lagrange Equation
5.4 The Legendre Condition
5.5 The Jacobi Condition
5.6 Advanced Practical Problems
6. Higher Order Calculus of Variations
6.1 Statement of the Variational Problem
6.2 The Euler Equation
6.3 Advanced Practical Problems
7. Double Integral Calculus of Variations
7.1 Statement of the Variational Problem
7.2 First and Second Variation
7.3 The Euler Condition
7.4 Advanced Practical Problems
8. The Noether Second Theorem
8.1 Invariance under Transformations
8.2 The Noether Second Theorem without Transformations of Time
8.3 The Noether Second Theorem with Transformations of Time
8.4 The Noether Second Theorem-Double Delta Integral Case
References
Index