Das Unendliche hat wie keine andere Frage von jeher so tief das Gemüt der Menschen bewegt," das Unendliche hat wie kaum eine andere Idee auf den Verstand so an regend und fruchtbar gewirkt," das Unendliche ist aber auch wie kein anderer Begriff so der Aufklärung bedürftig. HILBERT [226, p. 163] Etwas mehr als 100 Jahre sind vergangen, seit in den Mathemati schen Annalen der sechste und letzte Teil von CANTORS fundamenta ler Arbeit Über unendliche lineare Punktmannichfaltigkeiten erschie nen ist. Damit war die Mengenlehre geboren und mit ihr eine prinzipiell neue Auffassung des Unendlichen in…mehr
Das Unendliche hat wie keine andere Frage von jeher so tief das Gemüt der Menschen bewegt," das Unendliche hat wie kaum eine andere Idee auf den Verstand so an regend und fruchtbar gewirkt," das Unendliche ist aber auch wie kein anderer Begriff so der Aufklärung bedürftig. HILBERT [226, p. 163] Etwas mehr als 100 Jahre sind vergangen, seit in den Mathemati schen Annalen der sechste und letzte Teil von CANTORS fundamenta ler Arbeit Über unendliche lineare Punktmannichfaltigkeiten erschie nen ist. Damit war die Mengenlehre geboren und mit ihr eine prinzipiell neue Auffassung des Unendlichen in der Mathematik, verkörpert in CANTORS Theorie der transfiniten Zahlen. Diese Theo rie hat HILBERT als «die bewundernswerteste Blüte mathematischen Geistes und überhaupt eine der höchsten Leistungen rein verstandes mäßiger menschlicher Tätigkeit» bezeichnet. Anfangs unbeachtet oder abgelehnt, zu Ende des vorigen Jahrhunderts zunehmend anerkannt und verwendet, durch die Ent deckung der Antinomien erneut erschüttert, ist die Mengenlehre in ihrer heutigen axiomatisierten Gestalt eines der Fundamente der Mathematik. Die Tatsache, daß alle mathematischen Begriffe auf mengentheoretische Begriffe zurückgeführt werden können, hat ei nige Autoren sogar zu der Behauptung veranlaßt, die gesamte Ma thematik sei letztendlich mit der Mengenlehre identisch. Wenn uns allerdings eine solche Ansicht als eine ungerechtfertigte Überbeto nung des Formalen gegenüber dem Inhaltlichen erscheint, so ist doch unbestritten, daß die mengentheoretische Durchdringung der Mathematik neben der Entstehung des strukturellen Denkens und der Verwendung der axiomatischen Methode ein Wesenszug der mo dernen Mathematik ist. Das hat in zahlreichen Ländern bis in denSchulunterricht hinein gewirkt.
Egbert Brieskorn was professor of mathematics in Göttingen and Bonn and visiting professor at a number of foreign universities. Among mathematicians he was known for his fundamental contributions to the singularity theory of complex hypersurfaces. In Bonn he initiated the project "Felix Hausdorff - Gesammelte Werke"(10 volumes, 2001-2020) and served as head of the group of five editors responsible for the complete edition. For many years he worked on a biography of Hausdorff, which was to appear in the Hausdorff edition, though only about half of it was completed at the time of his death. Brieskorn was also the author of original and successful textbooks. He devoted decades of work to ecology and species conservation, for which he received the Cross of Merit on Ribbon of the Federal Republic of Germany. Walter Purkert was professor of the history of mathematics in Leipzig and visiting professor in Wuppertal. He later taught historyof mathematics in Bonn, where as a starting point for the Hausdorff editorial project, he published a finding aid with descriptions of the contents of Hausdorff's extensive estate. Thereafter, he served full-time as coordinator of the edition, overseeing the work of its editors, while contributing to a number of the volumes. After Egbert Brieskorn's death, he spent several years completing their Hausdorff biography, published in 2018 as Volume IB of the edition. Purkert also wrote a well-received biography of Georg Cantor. He is a corresponding member of the Académie Internationale d'Histoire des Sciences in Paris.
Inhaltsangabe
Kindheit und Jugend.- Studium in Zürich, Göttingen und Berlin.- Genesis der Mengenlehre.- Cantors Krankheit Die "Bacon-Shakespeare-Theorie".- Cantors Persönlichkeit und Philosophie.- "Das Wesen der Mathematik liegt in ihrer Freiheit".- Anerkennung der Mengenlehre.- Die Antinomien. Cantors letzte Jahre.- Ausblick.- Dokumenten-Anhang.- Chronologie.- Quellen.- Namensindex.- Faksimiles.- Verzeichnis der Abbildungen.
Kindheit und Jugend.- Studium in Zürich, Göttingen und Berlin.- Genesis der Mengenlehre.- Cantors Krankheit Die "Bacon-Shakespeare-Theorie".- Cantors Persönlichkeit und Philosophie.- "Das Wesen der Mathematik liegt in ihrer Freiheit".- Anerkennung der Mengenlehre.- Die Antinomien. Cantors letzte Jahre.- Ausblick.- Dokumenten-Anhang.- Chronologie.- Quellen.- Namensindex.- Faksimiles.- Verzeichnis der Abbildungen.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826