This book sheds light on state-of-the-art theories for more challenging outfit compatibility modeling scenarios. In particular, this book presents several cutting-edge graph learning techniques that can be used for outfit compatibility modeling. Due to its remarkable economic value, fashion compatibility modeling has gained increasing research attention in recent years. Although great efforts have been dedicated to this research area, previous studies mainly focused on fashion compatibility modeling for outfits that only involved two items and overlooked the fact that each outfit may be…mehr
This book sheds light on state-of-the-art theories for more challenging outfit compatibility modeling scenarios. In particular, this book presents several cutting-edge graph learning techniques that can be used for outfit compatibility modeling. Due to its remarkable economic value, fashion compatibility modeling has gained increasing research attention in recent years. Although great efforts have been dedicated to this research area, previous studies mainly focused on fashion compatibility modeling for outfits that only involved two items and overlooked the fact that each outfit may be composed of a variable number of items. This book develops a series of graph-learning based outfit compatibility modeling schemes, all of which have been proven to be effective over several public real-world datasets. This systematic approach benefits readers by introducing the techniques for compatibility modeling of outfits that involve a variable number of composing items. To deal with the challenging task of outfit compatibility modeling, this book provides comprehensive solutions, including correlation-oriented graph learning, modality-oriented graph learning, unsupervised disentangled graph learning, partially supervised disentangled graph learning, and metapath-guided heterogeneous graph learning. Moreover, this book sheds light on research frontiers that can inspire future research directions for scientists and researchers.
Produktdetails
Produktdetails
Synthesis Lectures on Information Concepts, Retrieval, and Services
Weili Guan, Ph.D. is a Professor at the Harbin Institute of Technology School of Electronics and Information Engineering. She received her M.S. from the National University of Singapore and her Ph.D. from Monash University. Her research interests are multimedia computing and information retrieval. Dr. Guan has published more than 40 papers at first-tier conferences and journals including ACM MM, SIGIR, IEEE TPAMI, and IEEE TIP. Xuemeng Song, Ph.D., is an Associate Professor at the Shandong University School of Computer Science and Technology. She received her B.E. from the University of Science and Technology of China and her Ph.D. from the National University of Singapore School of Computing. Dr. Song's research interests include information retrieval and social network analysis. She has published several papers in the top venues, such as IEEE TPAMI, ACM SIGIR, MM, TIP, and TOIS. In addition, she has served as a reviewer for many top conferences and journals. Dongliang Zhou, Ph.D., is a Postdoctoral Researcher at the Harbin Institute of Technology. He received his Ph.D. from the School of Computer Science and Technology at the Harbin Institute of Technology. Dr. Zhou's research focuses on multimedia computing, multimodal learning, and image synthesis. He also serves as a reviewer for top journals and conferences, such as IJCV, IEEE TNNLS, IEEE/CVF CVPR, and ACM MM. Liqiang Nie, Ph.D., is the Dean of the Department of Computer Science and Technology at the Harbin Institute of Technology. He received his B.Eng. from Xi'an Jiaotong University and his Ph.D. from National University of Singapore. His research interests lie primarily in multimedia computing and information retrieval. Dr. Nie has co-authored more than 100 papers and four books and has received more than 15,000 Google Scholar citations.
Inhaltsangabe
Introduction.- Correlation-oriented Graph Learning for OCM.- Modality-oriented Graph Learning for OCM.- Unsupervised Disentangled Graph Learning for OCM.- Supervised Disentangled Graph Learning for OCM.- Heterogeneous Graph Learning for Personalized OCM.- Research Frontiers.