This book provides an updated state-of-the-art review on new developments in alkali-activation. The main binder of concrete, Portland cement, represents almost 80% of the total CO2 emissions of concrete which are about 6 to 7% of the Planet's total CO2 emissions. This is particularly serious in the current context of climate change and it could get even worse because the demand for Portland cement is expected to increase by almost 200% by 2050 from 2010 levels, reaching 6000 million tons/year. Alkali-activated binders represent an alternative to Portland cement having higher durability and a lower CO2 footprint.…mehr
This book provides an updated state-of-the-art review on new developments in alkali-activation. The main binder of concrete, Portland cement, represents almost 80% of the total CO2 emissions of concrete which are about 6 to 7% of the Planet's total CO2 emissions. This is particularly serious in the current context of climate change and it could get even worse because the demand for Portland cement is expected to increase by almost 200% by 2050 from 2010 levels, reaching 6000 million tons/year. Alkali-activated binders represent an alternative to Portland cement having higher durability and a lower CO2 footprint.
Produktdetails
Produktdetails
Woodhead Publishing Series in Civil and Structural Engineering
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
1: Introduction to Handbook of Alkali-activated Cements, Mortars and Concretes Abstract 1.1 Brief overview on alkali-activated cement-based binders (AACB) 1.2 Potential contributions of AACB for sustainable development and eco-efficient construction 1.3 Outline of the book
Part One: Chemistry, mix design and manufacture of alkali-activated, cement-based concrete binders 2: An overview of the chemistry of alkali-activated cement-based binders Abstract 2.1 Introduction: alkaline cements 2.2 Alkaline activation of high-calcium systems: (Na,K)2O-CaO-Al2O3-SiO2-H2O 2.3 Alkaline activation of low-calcium systems: (N,K)2O-Al2O3-SiO2-H2O 2.4 Alkaline activation of hybrid cements 2.5 Future trends
3: Crucial insights on the mix design of alkali-activated cement-based binders Abstract 3.1 Introduction 3.2 Cementitious materials 3.3 Alkaline activators: choosing the best activator for each solid precursor 3.4 Conclusions and future trends
4: Reuse of urban and industrial waste glass as a novel activator for alkali-activated slag cement pastes: a case study Abstract 4.1 Introduction 4.2 Chemistry and structural characteristics of glasses 4.3 Waste glass solubility trials in highly alkaline media 4.4 Formation of sodium silicate solution from waste glasses dissolution: study by 29Si NMR 4.5 Use of waste glasses as an activator in the preparation of alkali-activated slag cement pastes 4.6 Conclusions Acknowledgements
Part Two: The properties of alkali-activated cement, mortar and concrete binders 5: Setting, segregation and bleeding of alkali-activated cement, mortar and concrete binders Abstract 5.1 Introduction 5.2 Setting times of cementitious materials and alkali-activated binder systems 5.3 Bleeding phenomena in concrete 5.4 Segregation and cohesion in concrete 5.5 Future trends 5.6 Sources of further information and advice
6: Rheology parameters of alkali-activated geopolymeric concrete binders Abstract 6.1 Introduction: main forming techniques 6.2 Rheology of suspensions 6.3 Rheometry 6.4 Examples of rheological behaviors of geopolymers 6.5 Future trends
7: Mechanical strength and Young's modulus of alkali-activated cement-based binders Abstract 7.1 Introduction 7.2 Types of prime materials - solid precursors 7.3 Compressive and flexural strength of alkali-activated binders 7.4 Tensile strength of alkali-activated binders 7.5 Young's modulus of alkali-activated binders 7.6 Fiber-reinforced alkali-activated binders 7.7 Conclusions and future trends 7.8 Sources of further information and advice
8: Prediction of the compressive strength of alkali-activated geopolymeric concrete binders by neuro-fuzzy modeling: a case studys Abstract 8.1 Introduction 8.2 Data collection to predict the compressive strength of geopolymer binders by neuro-fuzzy approach 8.3 Fuzzy logic: basic concepts and rules 8.4 Results and discussion of the use of neuro-fuzzy modeling to predict the compressive strength of geopolymer binders 8.5 Conclusions
9: Analysing the relation between pore structure and permeability of alkali-activated concrete binders Abstract 9.1 Introduction 9.2 Alkali-activated metakaolin (AAM) binders 9.3 Alkali-activated fly ash (AAFA) binders 9.4 Alkali-activated slag (AAS) binders 9.5 Conclusions and future trends
10: Assessing the shrinkage and creep of alkali-activated concrete binders Abstract 10.1 Introduction 10.2 Shrinkage and creep in concrete 10.3 Shrinkage in alkali-activated concrete 10.4 Creep in alkali-activated concrete 10.5 Factors affecting shrinkage and creep 10.6 Laboratory work and standard tests 10.7 Methods of predicti
1: Introduction to Handbook of Alkali-activated Cements, Mortars and Concretes Abstract 1.1 Brief overview on alkali-activated cement-based binders (AACB) 1.2 Potential contributions of AACB for sustainable development and eco-efficient construction 1.3 Outline of the book
Part One: Chemistry, mix design and manufacture of alkali-activated, cement-based concrete binders 2: An overview of the chemistry of alkali-activated cement-based binders Abstract 2.1 Introduction: alkaline cements 2.2 Alkaline activation of high-calcium systems: (Na,K)2O-CaO-Al2O3-SiO2-H2O 2.3 Alkaline activation of low-calcium systems: (N,K)2O-Al2O3-SiO2-H2O 2.4 Alkaline activation of hybrid cements 2.5 Future trends
3: Crucial insights on the mix design of alkali-activated cement-based binders Abstract 3.1 Introduction 3.2 Cementitious materials 3.3 Alkaline activators: choosing the best activator for each solid precursor 3.4 Conclusions and future trends
4: Reuse of urban and industrial waste glass as a novel activator for alkali-activated slag cement pastes: a case study Abstract 4.1 Introduction 4.2 Chemistry and structural characteristics of glasses 4.3 Waste glass solubility trials in highly alkaline media 4.4 Formation of sodium silicate solution from waste glasses dissolution: study by 29Si NMR 4.5 Use of waste glasses as an activator in the preparation of alkali-activated slag cement pastes 4.6 Conclusions Acknowledgements
Part Two: The properties of alkali-activated cement, mortar and concrete binders 5: Setting, segregation and bleeding of alkali-activated cement, mortar and concrete binders Abstract 5.1 Introduction 5.2 Setting times of cementitious materials and alkali-activated binder systems 5.3 Bleeding phenomena in concrete 5.4 Segregation and cohesion in concrete 5.5 Future trends 5.6 Sources of further information and advice
6: Rheology parameters of alkali-activated geopolymeric concrete binders Abstract 6.1 Introduction: main forming techniques 6.2 Rheology of suspensions 6.3 Rheometry 6.4 Examples of rheological behaviors of geopolymers 6.5 Future trends
7: Mechanical strength and Young's modulus of alkali-activated cement-based binders Abstract 7.1 Introduction 7.2 Types of prime materials - solid precursors 7.3 Compressive and flexural strength of alkali-activated binders 7.4 Tensile strength of alkali-activated binders 7.5 Young's modulus of alkali-activated binders 7.6 Fiber-reinforced alkali-activated binders 7.7 Conclusions and future trends 7.8 Sources of further information and advice
8: Prediction of the compressive strength of alkali-activated geopolymeric concrete binders by neuro-fuzzy modeling: a case studys Abstract 8.1 Introduction 8.2 Data collection to predict the compressive strength of geopolymer binders by neuro-fuzzy approach 8.3 Fuzzy logic: basic concepts and rules 8.4 Results and discussion of the use of neuro-fuzzy modeling to predict the compressive strength of geopolymer binders 8.5 Conclusions
9: Analysing the relation between pore structure and permeability of alkali-activated concrete binders Abstract 9.1 Introduction 9.2 Alkali-activated metakaolin (AAM) binders 9.3 Alkali-activated fly ash (AAFA) binders 9.4 Alkali-activated slag (AAS) binders 9.5 Conclusions and future trends
10: Assessing the shrinkage and creep of alkali-activated concrete binders Abstract 10.1 Introduction 10.2 Shrinkage and creep in concrete 10.3 Shrinkage in alkali-activated concrete 10.4 Creep in alkali-activated concrete 10.5 Factors affecting shrinkage and creep 10.6 Laboratory work and standard tests 10.7 Methods of predicti
Rezensionen
"This handbook is a great impetus for an accelerated commercialization of an eco-friendly alternative binder technology with more in-depth understanding of its strength, weakness, opportunities and threats...will go a long way to fulfil the essential requirements of transferring the technology from the laboratory to the field." --Dr Anjan K. Chatterjee, Fellow of the Indian National Academy of Engineering and Chairman of Conmat Technologies Pvt Ltd., Kolkata (From the foreword)
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826