Handbook of Fuel Cells
Advances in Electrocatalysis, Materials, Diagnostics and Durability, Volumes 5 and 6
Herausgeber: Vielstich, Wolf; Gasteiger, Hubert A.; Yokokawa, Harumi
Handbook of Fuel Cells
Advances in Electrocatalysis, Materials, Diagnostics and Durability, Volumes 5 and 6
Herausgeber: Vielstich, Wolf; Gasteiger, Hubert A.; Yokokawa, Harumi
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
A timely addition to the highly acclaimed four-volume handbook set; volumes 5 and 6 highlight recent developments, particularly in the fields of new materials, molecular modeling and durability. Since the publication of the first four volumes of the Handbook of Fuel Cells in 2003, the focus of fuel cell research and development has shifted from optimizing fuel cell performance with well-known materials to developing new materials concepts, and to understanding the origins of materials and fuel cell degradation. This new two-volume set provides an authoritative and timely guide to these recent developments in fuel cell research. …mehr
Andere Kunden interessierten sich auch für
- Wolf VielstichHandbook of Fuel Cells, 6 Volume Set4.156,99 €
- M H NehrirModeling and Control of Fuel Cells158,99 €
- Vladimir S. BagotskyFuel Cells, Second Edition106,99 €
- Fuel Cell Science211,99 €
- Biao HuangDynamic Modeling and Predictive Control in Solid Oxide Fuel Cells174,99 €
- James LarminieElectric Vehicle Technology Explained145,99 €
- Andrzej WieckowskiFuel Cell Catalysis226,99 €
-
-
-
A timely addition to the highly acclaimed four-volume handbook set; volumes 5 and 6 highlight recent developments, particularly in the fields of new materials, molecular modeling and durability.
Since the publication of the first four volumes of the Handbook of Fuel Cells in 2003, the focus of fuel cell research and development has shifted from optimizing fuel cell performance with well-known materials to developing new materials concepts, and to understanding the origins of materials and fuel cell degradation. This new two-volume set provides an authoritative and timely guide to these recent developments in fuel cell research.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Since the publication of the first four volumes of the Handbook of Fuel Cells in 2003, the focus of fuel cell research and development has shifted from optimizing fuel cell performance with well-known materials to developing new materials concepts, and to understanding the origins of materials and fuel cell degradation. This new two-volume set provides an authoritative and timely guide to these recent developments in fuel cell research.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 1136
- Erscheinungstermin: 1. Mai 2009
- Englisch
- Abmessung: 272mm x 310mm x 109mm
- Gewicht: 3824g
- ISBN-13: 9780470723111
- ISBN-10: 0470723114
- Artikelnr.: 25050469
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 1136
- Erscheinungstermin: 1. Mai 2009
- Englisch
- Abmessung: 272mm x 310mm x 109mm
- Gewicht: 3824g
- ISBN-13: 9780470723111
- ISBN-10: 0470723114
- Artikelnr.: 25050469
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Wolf Vielstich started research work on Fuel Fells and Fischer-Tropsch Synthesis at Ruhrchemie / Oberhausen. Working in the field of Fundamental and Applied Electrochemistry at the Institute of Physical Chemistry of Bonn University, he completed his Habilitation in Physical Chemistry in 1962. From 1965 he was a professor and director at the Bonn Institute. His special interest was new experimental methods like Rotating Ring Electrodes, online MS, Insitu IR and UHV-analysis of electrode surfaces, as well as to Batteries and Fuel Cells. His work in Electrochemistry has resulted in more than 250 publications, over 10 patents, books on Fuel Cells and Electrochemical Kinetics, and textbooks on Electrochemistry. From 1986 to 1993, Professor Vielstich was co-ordinator of the first European project on the DMFC and in 1998 he received the Faraday Medal of the Royal Chemical Society, UK. Hubert A. Gasteiger received his Ph.D. in Chemical Engineering from the University of California at Berkeley in 1993, studying the electrocatalysis of methanol oxidation. After 9 years of academic research on fundamental electrocatalysis and heterogeneous gas-phase catalysis, he worked for 10 years in industrial R&D groups. From 1998 to 2007, Dr. Gasteiger was involved in the stack component design for GM/Opel's H2-powered fuel cell vehicles, leading an R&D group in MEA development and diagnostics at GM/Opel's Fuel Cell Activities program in Honeoye Falls, New York, where he was promoted to Technical Fellow in 2004. In 2007 he joined Acta S.p.A., Italy, as Director of Catalyst Technology, developing catalysts and electrodes for alkaline (membrane) fuel cells. In January 2009 he took an assignment as Visiting Professor at the Electrochemical Energy Lab in the Dept. of Mechanical Engineering at MIT. He served as CöEditor-In-Chief for Wiley's Handbook of Fuel Cells - Fundamentals, Technology, and Applications (2003), and published 60 papers in refereed journals and 12 book chapters. In 2004, he received the Klaus-Jürgen Vetter Award for Electrochemical Kinetics from the International Society of Electrochemi Harumi Yokokawa 1972 - Graduated from Nuclear Engineering department, University of Tokyo 1977 - Graduated from Doctor course of University of Tokyo Title of Doctoral work "Calorimetric Investigation of Uranium Compounds" 1977 - Join to National Chemical Laboratory for Industry, Agency for Industrial Science and Technology, Ministry of International Trade and Industry (MITI) 1978-1980 - Research Associated in James Franck Institute, University of Chicago 1982 - Senior researcher, National Chemical Laboratory for Industry 1993 - National Institute of Materials and Chemical Research, AIST, MITI 2001 - National Institute of Advanced Industrial Science and Technology Awards 1989 - Award by Japan Information Center for Science and Technology on "Construction of Thermodynamic database and its advanced utilization" 2001 - Award by Minister of Science and Technology Agency on "Construction of Thermodynamic database and its applications to energy related materials." 2002 - Outstanding Achievement Awards from the High Temperature Materials Divsion, The Electrochemical Society, Inc., "In recognition of his contributions to the practical applications of thermochemistry to high temperature materials research and technology, especially in the area of solid oxide fuel cells."
Contributors to Volume 5 and 6.
Foreword.
Preface.
Abbreviations and Acronyms.
PART 1: ELECTROCATALYST MATERIALS FOR LOW TEMPERATURE FUEL CELLS.
Novel Catalysts.
1. Platinum monolayer oxygen reduction electrocatalysts (R. R. Adzic and F.
H. B. Lima).
2. Oxygen reduction on platinum bimetallic alloy catalysts (V. R.
Stamenkovic and N. M. Markovic).
3. Dealloyed Pt bimetallic electrocatalysts for oxygen reduction (P.
Strasser).
4. Transition metal/polymer catalysts for O2 reduction (C. M. Johnston, P.
Piela, and P. Zelenay).
5. Time to move beyond transition metal-N-C catalysts for oxygen reduction
(A. Garsuch, A. Bonakdarpour, G. Liu, R. Yang, and J. R. Dahn).
6. Catalysts for the electro-oxidation of small molecules (M. Watanabe and
H. Uchida).
7. Influence of size on the electrocatalytic activities of supported.
metal nanoparticles in fuel cell-related reactions (Frédéric Maillard,
Sergey Pronkin, and Elena R. Savinova).
8. Enzyme catalysis in biological fuel cells (Scott Calabrese Barton).
Fundamental Catalysis Models.
9. Density functional theory applied to electrocatalysis (S. Venkatachalam,
and T. Jacob).
10. First-principles modeling for the electrooxidation of small.
molecules (M. Neurock).
11. On the pathways of methanol and ethanol oxidation (W. Vielstich, V. A.
Paganin, O. Brandao Alves, and E. G. Ciapina).
12. Reaction pathway analysis and reaction intermediate detection.
via simultaneous differential electrochemical mass spectrometry.
(DEMS) and attenuated total reflection fourier transform.
infrared spectroscopy (ATR-FTIRS) (M. Heinen, Z. Jusys, and R. J. Behm).
13. Methanol oxidation on oxidized Pt surface (H. Varela, E. Sitta, and B.
C. Batista).
14. Mechanistic aspects of carbon monoxide oxidation (T. Iwasita and E. G.
Ciapina).
Catalyst Durability.
15. Platinum dissolution models and voltage cycling effects: platinum
dissolution in polymer electrolyte fuel cell (PEFC) and low-temperature
fuel cells (K. Ota and Y. Koizumi).
16. Catalyst and catalyst-support durability (F. T. Wagner, S. G. Yan, and
P. T. Yu).
17. Effects of contaminants on catalyst activity (F. H. Garzon and F. A.
Uribe).
PART 2: CONDUCTIVE MEMBRANES FOR LOWTEMPERATURE Fuel Cells.
Novel Materials.
18. Design rules for the improvement of the performance of
hydrocarbon-based membranes for proton exchange membrane fuel cells (PEMFC)
(M. Gross, G. Maier, T. Fuller, S. MacKinnon and C. Gittleman).
19. High-temperature polybenzimidazole-based membranes (D. C. Seel, B. C.
Benicewicz, L. Xiao, and T. J. Schmidt).
20. Radiation-grafted proton conducting membranes (L. Gubler and G. G.
Scherer).
21. Alkaline anion-exchange membranes for low-temperature fuel cell
application (J. R. Varcoe, S. D. Poynton, and R. C. T. Slade).
Characterization.
22. Colloidal structure of ionomer solutions (G. Gebel).
23. Conductivity, permeability, and ohmic shorting of ionomeric membranes
(C. K. Mittelsteadt and H. Liu).
Membrane Durability.
24. Highly durable PFSA membranes (E. Endoh).
25. Factors influencing ionomer degradation (M. Inaba and H. Yamada).
26. Chemical and mechanical membrane degradation (W. K. Liu, S. J. C.
Cleghorn, B. E. Delaney, and M. Crum).
27. Mechanical durability characterization and modeling of ionomeric
membranes (Y. H. Lai and D. A. Dillard).
PART 3: MATERIALS FOR HIGH TEMPERATURE FUEL CELLS.
Fundamental Models.
28. Mechanistic understanding and electrochemical modeling of mixed
conducting (SOFC) electrodes (R. Merkle, J. Maier, and J. Fleig).
29. Elementary kinetic modeling of solid oxide fuel cell electrode
reactions (S. B. Adler and W. G. Bessler).
30. Mechanical stability (A. Atkinson and A. J. Marquis).
Novel Materials.
31. Factors limiting the low-temperature operation of SOFCs (J. David
Carter, T. A. Cruse, B. J. Ingram, and M. Krumpelt).
32. New oxide cathodes and anodes (J. A. Kilner and J. T. S. Irvine).
33. New high-temperature proton conductors for fuel cells and gas
separation membranes (R. Haugsrud).
34. Nanoimpact on electrode and electrolyte layers with
Micro-Electro-Mechanical System (MEMS) technique (Y. D. Premchand, A.
Bieberle-Hütter, H. Galinski, J. L. M. Rupp, T. M. Ryll, B. Scherrer, R.
Tölke, Z. Yang, A. Harvey, A. Evans, L. Xu, and L. J. Gauckler).
Materials Durability.
35. Durability of metallic interconnects and protective coatings (M.
Mogensen and K. V. Hansen).
36. Impact of impurities and interface reaction on electrochemical activity
(M. Mogensen and K. V. Hansen).
37. Application of secondary ion mass spectrometry (SIMS) technique on the
durability of solid oxide fuel cell (SOFC) materials (K. Yamaji, N. Sakai,
H. Kishimoto, T. Horita, M. E. Brito and H. Yokokawa).
38. Durability of cathodes including Cr poisoning (N. H. Menzler, A. Mai,
and D. Stöver).
39. Durable sealing concepts with glass sealants or compression seals (H.
P. Buchkremer and R. Conradt).
PART 4: ADVANCED DIAGNOSTICS, MODELS, & DESIGN.
Low-Temperature Fuel Cells.
40. Direct three-dimensional visualization and morphological analysis of Pt
particles supported on carbon by transmission electron microtomography (T.
Ito, U. Matsuwaki, Y. Otsuka, G. Katagiri, M. Kato, K. Matsubara, Y.
Aoyama, and H. Jinnai).
41. Design approaches for determining local current and membrane resistance
in polymer electrolyte fuel cells (PEFCs) (S. A. Freunberger, M. Reum, and
F. N. B?uchi).
42. Heat and water transport models for polymer electrolyte fuel cells (U.
Pasaogullari).
43. Proton exchange membrane fuel cell (PEMFC) down-the-channel performance
model (W. Gu, D. R. Baker, Y. Liu, and H. A. Gasteiger).
44. Use of neutron imaging for proton exchange membrane fuel cell (PEMFC)
performance analysis and design (T. A. Trabold, J. P. Owejan, J. J.
Gagliardo, D. L. Jacobson, D. S. Hussey, and M. Arif).
45. Local transient techniques in polymer electrolyte fuel cell (PEFC)
diagnostics (I. A. Schneider and G. G. Scherer).
46. Proton exchange membrane fuel cell (PEMFC) flow-field design for
improved water management (J. S. Allen, S. Y. Son, S. H. Collicott).
47. Performance during start-up of proton exchange membrane (PEM) fuel
cells at subfreezing conditions (E. L. Thompson, W. Gu, and H. A.
Gasteiger).
48. Performance impact of cationic contaminants (B. S. Pivovar, B. Kienitz,
T. Rockward, F. Uribe, and F. Garzon).
49. Modeling the impact of cation contamination in a polymer electrolyte
membrane fuel cell (T. A. Greszler, T. E. Moylan, and H. A. Gasteiger).
50. Performance modeling and cell design for high concentration methanol
fuel cells (C. E. Shaffer and C. Y. Wang).
51. Design concepts and durability challenges for mini fuel cells (Shimshon
Gottesfeld).
High-Temperature Fuel Cells.
52. New diagnostic methods for the polarized state (T. Kawada).
53. Electrochemical impedance spectroscopy as diagnostic tool (S. H.
Jensen, J. Hjelm, A. Hagen, and M. Mogensen).
54. Observation and modeling of thermal stresses in cells and cell stacks
(H. Yakabe).
PART 5: PERFORMANCE DEGRADATION.
Low-Temperature Fuel Cells.
55. Carbon-support corrosion mechanisms and models (K. G. Gallagher, R. M.
Darling, and T. F. Fuller).
56. Electrode degradation mechanisms studies by current distribution
measurements (R. N. Carter, W. Gu, B. Brady, P. T. Yu, K. Subramanian, and
H. A. Gasteiger).
57. Electron microscopy to study membrane electrode assembly (MEA)
materials and structure degradation (M. Chatenet, L. Guetaz, and F.
Maillard).
58. Proton exchange membrane fuel cell degradation: mechanisms and recent
progress (T. Madden, M. Perry, L. Protsailo, M. Gummalla, S. Burlatsky, N.
Cipollini, S. Motupally, and T. Jarvi).
59. Cold-start durability of membrane-electrode assemblies (C. Y. Wang, X.
G. Yang, Y. Tabuchi, and F. Kagami).
60. Field experience with fuel cell vehicles (K. Wipke, S. Sprik, J. Kurtz,
and J. Garbak).
61. Membrane and catalyst performance targets for automotive fuel cells (A.
Iiyama, K. Shinohara, S. Iguchi, and A. Daimaru).
62. Field experience with portable DMFC products (J. Müller).
High-Temperature Fuel Cells.
63. Overview of solid oxide fuel cell degradation (H. Yokokawa).
64. Methane reforming kinetics, carbon deposition, and redox durability of
Ni/8 yttria-stabilized zirconia (YSZ) anodes (E. Ivers-Tiffée, H.
Timmermann, A. Leonide, N. H. Menzler, and J. Malzbender).
65. Sulfur poisoning on Ni catalyst and anodes (J. B¿gild Hansen and J.
Rostrup-Nielsen).
66. Ni shorting in relation to acid-base equilibrium of molten carbonate
for molten cabonate fuel cell (MCFC) application (S. Mitsushima).
67. Impact of impurities on reliability of materials in solid oxide fuel
cell (SOFC) stack/modules (H. Yokokawa, N. Sakai, T. Horita, and K.
Yamaji).
68. Field experience with molten carbonate fuel cells (MCFCs) and solid
oxide fuel cells (SOFCs) with an emphasis on degradation (H. Frey, A.
Kessler, W. Münch, M. Edel and V. Nerlich).
Subject Index.
Foreword.
Preface.
Abbreviations and Acronyms.
PART 1: ELECTROCATALYST MATERIALS FOR LOW TEMPERATURE FUEL CELLS.
Novel Catalysts.
1. Platinum monolayer oxygen reduction electrocatalysts (R. R. Adzic and F.
H. B. Lima).
2. Oxygen reduction on platinum bimetallic alloy catalysts (V. R.
Stamenkovic and N. M. Markovic).
3. Dealloyed Pt bimetallic electrocatalysts for oxygen reduction (P.
Strasser).
4. Transition metal/polymer catalysts for O2 reduction (C. M. Johnston, P.
Piela, and P. Zelenay).
5. Time to move beyond transition metal-N-C catalysts for oxygen reduction
(A. Garsuch, A. Bonakdarpour, G. Liu, R. Yang, and J. R. Dahn).
6. Catalysts for the electro-oxidation of small molecules (M. Watanabe and
H. Uchida).
7. Influence of size on the electrocatalytic activities of supported.
metal nanoparticles in fuel cell-related reactions (Frédéric Maillard,
Sergey Pronkin, and Elena R. Savinova).
8. Enzyme catalysis in biological fuel cells (Scott Calabrese Barton).
Fundamental Catalysis Models.
9. Density functional theory applied to electrocatalysis (S. Venkatachalam,
and T. Jacob).
10. First-principles modeling for the electrooxidation of small.
molecules (M. Neurock).
11. On the pathways of methanol and ethanol oxidation (W. Vielstich, V. A.
Paganin, O. Brandao Alves, and E. G. Ciapina).
12. Reaction pathway analysis and reaction intermediate detection.
via simultaneous differential electrochemical mass spectrometry.
(DEMS) and attenuated total reflection fourier transform.
infrared spectroscopy (ATR-FTIRS) (M. Heinen, Z. Jusys, and R. J. Behm).
13. Methanol oxidation on oxidized Pt surface (H. Varela, E. Sitta, and B.
C. Batista).
14. Mechanistic aspects of carbon monoxide oxidation (T. Iwasita and E. G.
Ciapina).
Catalyst Durability.
15. Platinum dissolution models and voltage cycling effects: platinum
dissolution in polymer electrolyte fuel cell (PEFC) and low-temperature
fuel cells (K. Ota and Y. Koizumi).
16. Catalyst and catalyst-support durability (F. T. Wagner, S. G. Yan, and
P. T. Yu).
17. Effects of contaminants on catalyst activity (F. H. Garzon and F. A.
Uribe).
PART 2: CONDUCTIVE MEMBRANES FOR LOWTEMPERATURE Fuel Cells.
Novel Materials.
18. Design rules for the improvement of the performance of
hydrocarbon-based membranes for proton exchange membrane fuel cells (PEMFC)
(M. Gross, G. Maier, T. Fuller, S. MacKinnon and C. Gittleman).
19. High-temperature polybenzimidazole-based membranes (D. C. Seel, B. C.
Benicewicz, L. Xiao, and T. J. Schmidt).
20. Radiation-grafted proton conducting membranes (L. Gubler and G. G.
Scherer).
21. Alkaline anion-exchange membranes for low-temperature fuel cell
application (J. R. Varcoe, S. D. Poynton, and R. C. T. Slade).
Characterization.
22. Colloidal structure of ionomer solutions (G. Gebel).
23. Conductivity, permeability, and ohmic shorting of ionomeric membranes
(C. K. Mittelsteadt and H. Liu).
Membrane Durability.
24. Highly durable PFSA membranes (E. Endoh).
25. Factors influencing ionomer degradation (M. Inaba and H. Yamada).
26. Chemical and mechanical membrane degradation (W. K. Liu, S. J. C.
Cleghorn, B. E. Delaney, and M. Crum).
27. Mechanical durability characterization and modeling of ionomeric
membranes (Y. H. Lai and D. A. Dillard).
PART 3: MATERIALS FOR HIGH TEMPERATURE FUEL CELLS.
Fundamental Models.
28. Mechanistic understanding and electrochemical modeling of mixed
conducting (SOFC) electrodes (R. Merkle, J. Maier, and J. Fleig).
29. Elementary kinetic modeling of solid oxide fuel cell electrode
reactions (S. B. Adler and W. G. Bessler).
30. Mechanical stability (A. Atkinson and A. J. Marquis).
Novel Materials.
31. Factors limiting the low-temperature operation of SOFCs (J. David
Carter, T. A. Cruse, B. J. Ingram, and M. Krumpelt).
32. New oxide cathodes and anodes (J. A. Kilner and J. T. S. Irvine).
33. New high-temperature proton conductors for fuel cells and gas
separation membranes (R. Haugsrud).
34. Nanoimpact on electrode and electrolyte layers with
Micro-Electro-Mechanical System (MEMS) technique (Y. D. Premchand, A.
Bieberle-Hütter, H. Galinski, J. L. M. Rupp, T. M. Ryll, B. Scherrer, R.
Tölke, Z. Yang, A. Harvey, A. Evans, L. Xu, and L. J. Gauckler).
Materials Durability.
35. Durability of metallic interconnects and protective coatings (M.
Mogensen and K. V. Hansen).
36. Impact of impurities and interface reaction on electrochemical activity
(M. Mogensen and K. V. Hansen).
37. Application of secondary ion mass spectrometry (SIMS) technique on the
durability of solid oxide fuel cell (SOFC) materials (K. Yamaji, N. Sakai,
H. Kishimoto, T. Horita, M. E. Brito and H. Yokokawa).
38. Durability of cathodes including Cr poisoning (N. H. Menzler, A. Mai,
and D. Stöver).
39. Durable sealing concepts with glass sealants or compression seals (H.
P. Buchkremer and R. Conradt).
PART 4: ADVANCED DIAGNOSTICS, MODELS, & DESIGN.
Low-Temperature Fuel Cells.
40. Direct three-dimensional visualization and morphological analysis of Pt
particles supported on carbon by transmission electron microtomography (T.
Ito, U. Matsuwaki, Y. Otsuka, G. Katagiri, M. Kato, K. Matsubara, Y.
Aoyama, and H. Jinnai).
41. Design approaches for determining local current and membrane resistance
in polymer electrolyte fuel cells (PEFCs) (S. A. Freunberger, M. Reum, and
F. N. B?uchi).
42. Heat and water transport models for polymer electrolyte fuel cells (U.
Pasaogullari).
43. Proton exchange membrane fuel cell (PEMFC) down-the-channel performance
model (W. Gu, D. R. Baker, Y. Liu, and H. A. Gasteiger).
44. Use of neutron imaging for proton exchange membrane fuel cell (PEMFC)
performance analysis and design (T. A. Trabold, J. P. Owejan, J. J.
Gagliardo, D. L. Jacobson, D. S. Hussey, and M. Arif).
45. Local transient techniques in polymer electrolyte fuel cell (PEFC)
diagnostics (I. A. Schneider and G. G. Scherer).
46. Proton exchange membrane fuel cell (PEMFC) flow-field design for
improved water management (J. S. Allen, S. Y. Son, S. H. Collicott).
47. Performance during start-up of proton exchange membrane (PEM) fuel
cells at subfreezing conditions (E. L. Thompson, W. Gu, and H. A.
Gasteiger).
48. Performance impact of cationic contaminants (B. S. Pivovar, B. Kienitz,
T. Rockward, F. Uribe, and F. Garzon).
49. Modeling the impact of cation contamination in a polymer electrolyte
membrane fuel cell (T. A. Greszler, T. E. Moylan, and H. A. Gasteiger).
50. Performance modeling and cell design for high concentration methanol
fuel cells (C. E. Shaffer and C. Y. Wang).
51. Design concepts and durability challenges for mini fuel cells (Shimshon
Gottesfeld).
High-Temperature Fuel Cells.
52. New diagnostic methods for the polarized state (T. Kawada).
53. Electrochemical impedance spectroscopy as diagnostic tool (S. H.
Jensen, J. Hjelm, A. Hagen, and M. Mogensen).
54. Observation and modeling of thermal stresses in cells and cell stacks
(H. Yakabe).
PART 5: PERFORMANCE DEGRADATION.
Low-Temperature Fuel Cells.
55. Carbon-support corrosion mechanisms and models (K. G. Gallagher, R. M.
Darling, and T. F. Fuller).
56. Electrode degradation mechanisms studies by current distribution
measurements (R. N. Carter, W. Gu, B. Brady, P. T. Yu, K. Subramanian, and
H. A. Gasteiger).
57. Electron microscopy to study membrane electrode assembly (MEA)
materials and structure degradation (M. Chatenet, L. Guetaz, and F.
Maillard).
58. Proton exchange membrane fuel cell degradation: mechanisms and recent
progress (T. Madden, M. Perry, L. Protsailo, M. Gummalla, S. Burlatsky, N.
Cipollini, S. Motupally, and T. Jarvi).
59. Cold-start durability of membrane-electrode assemblies (C. Y. Wang, X.
G. Yang, Y. Tabuchi, and F. Kagami).
60. Field experience with fuel cell vehicles (K. Wipke, S. Sprik, J. Kurtz,
and J. Garbak).
61. Membrane and catalyst performance targets for automotive fuel cells (A.
Iiyama, K. Shinohara, S. Iguchi, and A. Daimaru).
62. Field experience with portable DMFC products (J. Müller).
High-Temperature Fuel Cells.
63. Overview of solid oxide fuel cell degradation (H. Yokokawa).
64. Methane reforming kinetics, carbon deposition, and redox durability of
Ni/8 yttria-stabilized zirconia (YSZ) anodes (E. Ivers-Tiffée, H.
Timmermann, A. Leonide, N. H. Menzler, and J. Malzbender).
65. Sulfur poisoning on Ni catalyst and anodes (J. B¿gild Hansen and J.
Rostrup-Nielsen).
66. Ni shorting in relation to acid-base equilibrium of molten carbonate
for molten cabonate fuel cell (MCFC) application (S. Mitsushima).
67. Impact of impurities on reliability of materials in solid oxide fuel
cell (SOFC) stack/modules (H. Yokokawa, N. Sakai, T. Horita, and K.
Yamaji).
68. Field experience with molten carbonate fuel cells (MCFCs) and solid
oxide fuel cells (SOFCs) with an emphasis on degradation (H. Frey, A.
Kessler, W. Münch, M. Edel and V. Nerlich).
Subject Index.
Contributors to Volume 5 and 6.
Foreword.
Preface.
Abbreviations and Acronyms.
PART 1: ELECTROCATALYST MATERIALS FOR LOW TEMPERATURE FUEL CELLS.
Novel Catalysts.
1. Platinum monolayer oxygen reduction electrocatalysts (R. R. Adzic and F.
H. B. Lima).
2. Oxygen reduction on platinum bimetallic alloy catalysts (V. R.
Stamenkovic and N. M. Markovic).
3. Dealloyed Pt bimetallic electrocatalysts for oxygen reduction (P.
Strasser).
4. Transition metal/polymer catalysts for O2 reduction (C. M. Johnston, P.
Piela, and P. Zelenay).
5. Time to move beyond transition metal-N-C catalysts for oxygen reduction
(A. Garsuch, A. Bonakdarpour, G. Liu, R. Yang, and J. R. Dahn).
6. Catalysts for the electro-oxidation of small molecules (M. Watanabe and
H. Uchida).
7. Influence of size on the electrocatalytic activities of supported.
metal nanoparticles in fuel cell-related reactions (Frédéric Maillard,
Sergey Pronkin, and Elena R. Savinova).
8. Enzyme catalysis in biological fuel cells (Scott Calabrese Barton).
Fundamental Catalysis Models.
9. Density functional theory applied to electrocatalysis (S. Venkatachalam,
and T. Jacob).
10. First-principles modeling for the electrooxidation of small.
molecules (M. Neurock).
11. On the pathways of methanol and ethanol oxidation (W. Vielstich, V. A.
Paganin, O. Brandao Alves, and E. G. Ciapina).
12. Reaction pathway analysis and reaction intermediate detection.
via simultaneous differential electrochemical mass spectrometry.
(DEMS) and attenuated total reflection fourier transform.
infrared spectroscopy (ATR-FTIRS) (M. Heinen, Z. Jusys, and R. J. Behm).
13. Methanol oxidation on oxidized Pt surface (H. Varela, E. Sitta, and B.
C. Batista).
14. Mechanistic aspects of carbon monoxide oxidation (T. Iwasita and E. G.
Ciapina).
Catalyst Durability.
15. Platinum dissolution models and voltage cycling effects: platinum
dissolution in polymer electrolyte fuel cell (PEFC) and low-temperature
fuel cells (K. Ota and Y. Koizumi).
16. Catalyst and catalyst-support durability (F. T. Wagner, S. G. Yan, and
P. T. Yu).
17. Effects of contaminants on catalyst activity (F. H. Garzon and F. A.
Uribe).
PART 2: CONDUCTIVE MEMBRANES FOR LOWTEMPERATURE Fuel Cells.
Novel Materials.
18. Design rules for the improvement of the performance of
hydrocarbon-based membranes for proton exchange membrane fuel cells (PEMFC)
(M. Gross, G. Maier, T. Fuller, S. MacKinnon and C. Gittleman).
19. High-temperature polybenzimidazole-based membranes (D. C. Seel, B. C.
Benicewicz, L. Xiao, and T. J. Schmidt).
20. Radiation-grafted proton conducting membranes (L. Gubler and G. G.
Scherer).
21. Alkaline anion-exchange membranes for low-temperature fuel cell
application (J. R. Varcoe, S. D. Poynton, and R. C. T. Slade).
Characterization.
22. Colloidal structure of ionomer solutions (G. Gebel).
23. Conductivity, permeability, and ohmic shorting of ionomeric membranes
(C. K. Mittelsteadt and H. Liu).
Membrane Durability.
24. Highly durable PFSA membranes (E. Endoh).
25. Factors influencing ionomer degradation (M. Inaba and H. Yamada).
26. Chemical and mechanical membrane degradation (W. K. Liu, S. J. C.
Cleghorn, B. E. Delaney, and M. Crum).
27. Mechanical durability characterization and modeling of ionomeric
membranes (Y. H. Lai and D. A. Dillard).
PART 3: MATERIALS FOR HIGH TEMPERATURE FUEL CELLS.
Fundamental Models.
28. Mechanistic understanding and electrochemical modeling of mixed
conducting (SOFC) electrodes (R. Merkle, J. Maier, and J. Fleig).
29. Elementary kinetic modeling of solid oxide fuel cell electrode
reactions (S. B. Adler and W. G. Bessler).
30. Mechanical stability (A. Atkinson and A. J. Marquis).
Novel Materials.
31. Factors limiting the low-temperature operation of SOFCs (J. David
Carter, T. A. Cruse, B. J. Ingram, and M. Krumpelt).
32. New oxide cathodes and anodes (J. A. Kilner and J. T. S. Irvine).
33. New high-temperature proton conductors for fuel cells and gas
separation membranes (R. Haugsrud).
34. Nanoimpact on electrode and electrolyte layers with
Micro-Electro-Mechanical System (MEMS) technique (Y. D. Premchand, A.
Bieberle-Hütter, H. Galinski, J. L. M. Rupp, T. M. Ryll, B. Scherrer, R.
Tölke, Z. Yang, A. Harvey, A. Evans, L. Xu, and L. J. Gauckler).
Materials Durability.
35. Durability of metallic interconnects and protective coatings (M.
Mogensen and K. V. Hansen).
36. Impact of impurities and interface reaction on electrochemical activity
(M. Mogensen and K. V. Hansen).
37. Application of secondary ion mass spectrometry (SIMS) technique on the
durability of solid oxide fuel cell (SOFC) materials (K. Yamaji, N. Sakai,
H. Kishimoto, T. Horita, M. E. Brito and H. Yokokawa).
38. Durability of cathodes including Cr poisoning (N. H. Menzler, A. Mai,
and D. Stöver).
39. Durable sealing concepts with glass sealants or compression seals (H.
P. Buchkremer and R. Conradt).
PART 4: ADVANCED DIAGNOSTICS, MODELS, & DESIGN.
Low-Temperature Fuel Cells.
40. Direct three-dimensional visualization and morphological analysis of Pt
particles supported on carbon by transmission electron microtomography (T.
Ito, U. Matsuwaki, Y. Otsuka, G. Katagiri, M. Kato, K. Matsubara, Y.
Aoyama, and H. Jinnai).
41. Design approaches for determining local current and membrane resistance
in polymer electrolyte fuel cells (PEFCs) (S. A. Freunberger, M. Reum, and
F. N. B?uchi).
42. Heat and water transport models for polymer electrolyte fuel cells (U.
Pasaogullari).
43. Proton exchange membrane fuel cell (PEMFC) down-the-channel performance
model (W. Gu, D. R. Baker, Y. Liu, and H. A. Gasteiger).
44. Use of neutron imaging for proton exchange membrane fuel cell (PEMFC)
performance analysis and design (T. A. Trabold, J. P. Owejan, J. J.
Gagliardo, D. L. Jacobson, D. S. Hussey, and M. Arif).
45. Local transient techniques in polymer electrolyte fuel cell (PEFC)
diagnostics (I. A. Schneider and G. G. Scherer).
46. Proton exchange membrane fuel cell (PEMFC) flow-field design for
improved water management (J. S. Allen, S. Y. Son, S. H. Collicott).
47. Performance during start-up of proton exchange membrane (PEM) fuel
cells at subfreezing conditions (E. L. Thompson, W. Gu, and H. A.
Gasteiger).
48. Performance impact of cationic contaminants (B. S. Pivovar, B. Kienitz,
T. Rockward, F. Uribe, and F. Garzon).
49. Modeling the impact of cation contamination in a polymer electrolyte
membrane fuel cell (T. A. Greszler, T. E. Moylan, and H. A. Gasteiger).
50. Performance modeling and cell design for high concentration methanol
fuel cells (C. E. Shaffer and C. Y. Wang).
51. Design concepts and durability challenges for mini fuel cells (Shimshon
Gottesfeld).
High-Temperature Fuel Cells.
52. New diagnostic methods for the polarized state (T. Kawada).
53. Electrochemical impedance spectroscopy as diagnostic tool (S. H.
Jensen, J. Hjelm, A. Hagen, and M. Mogensen).
54. Observation and modeling of thermal stresses in cells and cell stacks
(H. Yakabe).
PART 5: PERFORMANCE DEGRADATION.
Low-Temperature Fuel Cells.
55. Carbon-support corrosion mechanisms and models (K. G. Gallagher, R. M.
Darling, and T. F. Fuller).
56. Electrode degradation mechanisms studies by current distribution
measurements (R. N. Carter, W. Gu, B. Brady, P. T. Yu, K. Subramanian, and
H. A. Gasteiger).
57. Electron microscopy to study membrane electrode assembly (MEA)
materials and structure degradation (M. Chatenet, L. Guetaz, and F.
Maillard).
58. Proton exchange membrane fuel cell degradation: mechanisms and recent
progress (T. Madden, M. Perry, L. Protsailo, M. Gummalla, S. Burlatsky, N.
Cipollini, S. Motupally, and T. Jarvi).
59. Cold-start durability of membrane-electrode assemblies (C. Y. Wang, X.
G. Yang, Y. Tabuchi, and F. Kagami).
60. Field experience with fuel cell vehicles (K. Wipke, S. Sprik, J. Kurtz,
and J. Garbak).
61. Membrane and catalyst performance targets for automotive fuel cells (A.
Iiyama, K. Shinohara, S. Iguchi, and A. Daimaru).
62. Field experience with portable DMFC products (J. Müller).
High-Temperature Fuel Cells.
63. Overview of solid oxide fuel cell degradation (H. Yokokawa).
64. Methane reforming kinetics, carbon deposition, and redox durability of
Ni/8 yttria-stabilized zirconia (YSZ) anodes (E. Ivers-Tiffée, H.
Timmermann, A. Leonide, N. H. Menzler, and J. Malzbender).
65. Sulfur poisoning on Ni catalyst and anodes (J. B¿gild Hansen and J.
Rostrup-Nielsen).
66. Ni shorting in relation to acid-base equilibrium of molten carbonate
for molten cabonate fuel cell (MCFC) application (S. Mitsushima).
67. Impact of impurities on reliability of materials in solid oxide fuel
cell (SOFC) stack/modules (H. Yokokawa, N. Sakai, T. Horita, and K.
Yamaji).
68. Field experience with molten carbonate fuel cells (MCFCs) and solid
oxide fuel cells (SOFCs) with an emphasis on degradation (H. Frey, A.
Kessler, W. Münch, M. Edel and V. Nerlich).
Subject Index.
Foreword.
Preface.
Abbreviations and Acronyms.
PART 1: ELECTROCATALYST MATERIALS FOR LOW TEMPERATURE FUEL CELLS.
Novel Catalysts.
1. Platinum monolayer oxygen reduction electrocatalysts (R. R. Adzic and F.
H. B. Lima).
2. Oxygen reduction on platinum bimetallic alloy catalysts (V. R.
Stamenkovic and N. M. Markovic).
3. Dealloyed Pt bimetallic electrocatalysts for oxygen reduction (P.
Strasser).
4. Transition metal/polymer catalysts for O2 reduction (C. M. Johnston, P.
Piela, and P. Zelenay).
5. Time to move beyond transition metal-N-C catalysts for oxygen reduction
(A. Garsuch, A. Bonakdarpour, G. Liu, R. Yang, and J. R. Dahn).
6. Catalysts for the electro-oxidation of small molecules (M. Watanabe and
H. Uchida).
7. Influence of size on the electrocatalytic activities of supported.
metal nanoparticles in fuel cell-related reactions (Frédéric Maillard,
Sergey Pronkin, and Elena R. Savinova).
8. Enzyme catalysis in biological fuel cells (Scott Calabrese Barton).
Fundamental Catalysis Models.
9. Density functional theory applied to electrocatalysis (S. Venkatachalam,
and T. Jacob).
10. First-principles modeling for the electrooxidation of small.
molecules (M. Neurock).
11. On the pathways of methanol and ethanol oxidation (W. Vielstich, V. A.
Paganin, O. Brandao Alves, and E. G. Ciapina).
12. Reaction pathway analysis and reaction intermediate detection.
via simultaneous differential electrochemical mass spectrometry.
(DEMS) and attenuated total reflection fourier transform.
infrared spectroscopy (ATR-FTIRS) (M. Heinen, Z. Jusys, and R. J. Behm).
13. Methanol oxidation on oxidized Pt surface (H. Varela, E. Sitta, and B.
C. Batista).
14. Mechanistic aspects of carbon monoxide oxidation (T. Iwasita and E. G.
Ciapina).
Catalyst Durability.
15. Platinum dissolution models and voltage cycling effects: platinum
dissolution in polymer electrolyte fuel cell (PEFC) and low-temperature
fuel cells (K. Ota and Y. Koizumi).
16. Catalyst and catalyst-support durability (F. T. Wagner, S. G. Yan, and
P. T. Yu).
17. Effects of contaminants on catalyst activity (F. H. Garzon and F. A.
Uribe).
PART 2: CONDUCTIVE MEMBRANES FOR LOWTEMPERATURE Fuel Cells.
Novel Materials.
18. Design rules for the improvement of the performance of
hydrocarbon-based membranes for proton exchange membrane fuel cells (PEMFC)
(M. Gross, G. Maier, T. Fuller, S. MacKinnon and C. Gittleman).
19. High-temperature polybenzimidazole-based membranes (D. C. Seel, B. C.
Benicewicz, L. Xiao, and T. J. Schmidt).
20. Radiation-grafted proton conducting membranes (L. Gubler and G. G.
Scherer).
21. Alkaline anion-exchange membranes for low-temperature fuel cell
application (J. R. Varcoe, S. D. Poynton, and R. C. T. Slade).
Characterization.
22. Colloidal structure of ionomer solutions (G. Gebel).
23. Conductivity, permeability, and ohmic shorting of ionomeric membranes
(C. K. Mittelsteadt and H. Liu).
Membrane Durability.
24. Highly durable PFSA membranes (E. Endoh).
25. Factors influencing ionomer degradation (M. Inaba and H. Yamada).
26. Chemical and mechanical membrane degradation (W. K. Liu, S. J. C.
Cleghorn, B. E. Delaney, and M. Crum).
27. Mechanical durability characterization and modeling of ionomeric
membranes (Y. H. Lai and D. A. Dillard).
PART 3: MATERIALS FOR HIGH TEMPERATURE FUEL CELLS.
Fundamental Models.
28. Mechanistic understanding and electrochemical modeling of mixed
conducting (SOFC) electrodes (R. Merkle, J. Maier, and J. Fleig).
29. Elementary kinetic modeling of solid oxide fuel cell electrode
reactions (S. B. Adler and W. G. Bessler).
30. Mechanical stability (A. Atkinson and A. J. Marquis).
Novel Materials.
31. Factors limiting the low-temperature operation of SOFCs (J. David
Carter, T. A. Cruse, B. J. Ingram, and M. Krumpelt).
32. New oxide cathodes and anodes (J. A. Kilner and J. T. S. Irvine).
33. New high-temperature proton conductors for fuel cells and gas
separation membranes (R. Haugsrud).
34. Nanoimpact on electrode and electrolyte layers with
Micro-Electro-Mechanical System (MEMS) technique (Y. D. Premchand, A.
Bieberle-Hütter, H. Galinski, J. L. M. Rupp, T. M. Ryll, B. Scherrer, R.
Tölke, Z. Yang, A. Harvey, A. Evans, L. Xu, and L. J. Gauckler).
Materials Durability.
35. Durability of metallic interconnects and protective coatings (M.
Mogensen and K. V. Hansen).
36. Impact of impurities and interface reaction on electrochemical activity
(M. Mogensen and K. V. Hansen).
37. Application of secondary ion mass spectrometry (SIMS) technique on the
durability of solid oxide fuel cell (SOFC) materials (K. Yamaji, N. Sakai,
H. Kishimoto, T. Horita, M. E. Brito and H. Yokokawa).
38. Durability of cathodes including Cr poisoning (N. H. Menzler, A. Mai,
and D. Stöver).
39. Durable sealing concepts with glass sealants or compression seals (H.
P. Buchkremer and R. Conradt).
PART 4: ADVANCED DIAGNOSTICS, MODELS, & DESIGN.
Low-Temperature Fuel Cells.
40. Direct three-dimensional visualization and morphological analysis of Pt
particles supported on carbon by transmission electron microtomography (T.
Ito, U. Matsuwaki, Y. Otsuka, G. Katagiri, M. Kato, K. Matsubara, Y.
Aoyama, and H. Jinnai).
41. Design approaches for determining local current and membrane resistance
in polymer electrolyte fuel cells (PEFCs) (S. A. Freunberger, M. Reum, and
F. N. B?uchi).
42. Heat and water transport models for polymer electrolyte fuel cells (U.
Pasaogullari).
43. Proton exchange membrane fuel cell (PEMFC) down-the-channel performance
model (W. Gu, D. R. Baker, Y. Liu, and H. A. Gasteiger).
44. Use of neutron imaging for proton exchange membrane fuel cell (PEMFC)
performance analysis and design (T. A. Trabold, J. P. Owejan, J. J.
Gagliardo, D. L. Jacobson, D. S. Hussey, and M. Arif).
45. Local transient techniques in polymer electrolyte fuel cell (PEFC)
diagnostics (I. A. Schneider and G. G. Scherer).
46. Proton exchange membrane fuel cell (PEMFC) flow-field design for
improved water management (J. S. Allen, S. Y. Son, S. H. Collicott).
47. Performance during start-up of proton exchange membrane (PEM) fuel
cells at subfreezing conditions (E. L. Thompson, W. Gu, and H. A.
Gasteiger).
48. Performance impact of cationic contaminants (B. S. Pivovar, B. Kienitz,
T. Rockward, F. Uribe, and F. Garzon).
49. Modeling the impact of cation contamination in a polymer electrolyte
membrane fuel cell (T. A. Greszler, T. E. Moylan, and H. A. Gasteiger).
50. Performance modeling and cell design for high concentration methanol
fuel cells (C. E. Shaffer and C. Y. Wang).
51. Design concepts and durability challenges for mini fuel cells (Shimshon
Gottesfeld).
High-Temperature Fuel Cells.
52. New diagnostic methods for the polarized state (T. Kawada).
53. Electrochemical impedance spectroscopy as diagnostic tool (S. H.
Jensen, J. Hjelm, A. Hagen, and M. Mogensen).
54. Observation and modeling of thermal stresses in cells and cell stacks
(H. Yakabe).
PART 5: PERFORMANCE DEGRADATION.
Low-Temperature Fuel Cells.
55. Carbon-support corrosion mechanisms and models (K. G. Gallagher, R. M.
Darling, and T. F. Fuller).
56. Electrode degradation mechanisms studies by current distribution
measurements (R. N. Carter, W. Gu, B. Brady, P. T. Yu, K. Subramanian, and
H. A. Gasteiger).
57. Electron microscopy to study membrane electrode assembly (MEA)
materials and structure degradation (M. Chatenet, L. Guetaz, and F.
Maillard).
58. Proton exchange membrane fuel cell degradation: mechanisms and recent
progress (T. Madden, M. Perry, L. Protsailo, M. Gummalla, S. Burlatsky, N.
Cipollini, S. Motupally, and T. Jarvi).
59. Cold-start durability of membrane-electrode assemblies (C. Y. Wang, X.
G. Yang, Y. Tabuchi, and F. Kagami).
60. Field experience with fuel cell vehicles (K. Wipke, S. Sprik, J. Kurtz,
and J. Garbak).
61. Membrane and catalyst performance targets for automotive fuel cells (A.
Iiyama, K. Shinohara, S. Iguchi, and A. Daimaru).
62. Field experience with portable DMFC products (J. Müller).
High-Temperature Fuel Cells.
63. Overview of solid oxide fuel cell degradation (H. Yokokawa).
64. Methane reforming kinetics, carbon deposition, and redox durability of
Ni/8 yttria-stabilized zirconia (YSZ) anodes (E. Ivers-Tiffée, H.
Timmermann, A. Leonide, N. H. Menzler, and J. Malzbender).
65. Sulfur poisoning on Ni catalyst and anodes (J. B¿gild Hansen and J.
Rostrup-Nielsen).
66. Ni shorting in relation to acid-base equilibrium of molten carbonate
for molten cabonate fuel cell (MCFC) application (S. Mitsushima).
67. Impact of impurities on reliability of materials in solid oxide fuel
cell (SOFC) stack/modules (H. Yokokawa, N. Sakai, T. Horita, and K.
Yamaji).
68. Field experience with molten carbonate fuel cells (MCFCs) and solid
oxide fuel cells (SOFCs) with an emphasis on degradation (H. Frey, A.
Kessler, W. Münch, M. Edel and V. Nerlich).
Subject Index.