Akihito Uchiyama
Hardy Spaces on the Euclidean Space
Akihito Uchiyama
Hardy Spaces on the Euclidean Space
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Uchiyama's decomposition of BMO functions is considered the "Mount Everest of Hardy space theory". This book is based on the draft, which the author completed before his sudden death in 1997. Nowadays, his contributions are extremely influential in various fields of analysis, leading to further breakthroughs.
Andere Kunden interessierten sich auch für
Loukas GrafakosFundamentals of Fourier Analysis42,99 €
Miroslav PavlovicFunction Classes on the Unit Disc131,99 €
Peter SchneiderNonarchimedean Functional Analysis77,99 €
Peter SchneiderNonarchimedean Functional Analysis76,99 €
Olli MartioModuli in Modern Mapping Theory98,99 €
Olli MartioModuli in Modern Mapping Theory76,99 €
Kehe ZhuSpaces of Holomorphic Functions in the Unit Ball49,99 €-
-
-
Uchiyama's decomposition of BMO functions is considered the "Mount Everest of Hardy space theory". This book is based on the draft, which the author completed before his sudden death in 1997. Nowadays, his contributions are extremely influential in various fields of analysis, leading to further breakthroughs.
Produktdetails
- Produktdetails
- Springer Monographs in Mathematics
- Verlag: Springer, Berlin
- 2001
- Seitenzahl: 320
- Erscheinungstermin: 1. Juli 2001
- Englisch
- Abmessung: 241mm x 160mm x 22mm
- Gewicht: 620g
- ISBN-13: 9784431703198
- ISBN-10: 4431703195
- Artikelnr.: 10173598
- Herstellerkennzeichnung
- Springer-Verlag KG
- Sachsenplatz 4-6
- 1201 Wien, AT
- ProductSafety@springernature.com
- Springer Monographs in Mathematics
- Verlag: Springer, Berlin
- 2001
- Seitenzahl: 320
- Erscheinungstermin: 1. Juli 2001
- Englisch
- Abmessung: 241mm x 160mm x 22mm
- Gewicht: 620g
- ISBN-13: 9784431703198
- ISBN-10: 4431703195
- Artikelnr.: 10173598
- Herstellerkennzeichnung
- Springer-Verlag KG
- Sachsenplatz 4-6
- 1201 Wien, AT
- ProductSafety@springernature.com
Foreword.- Recollections of My Good Friend, Akihito Uchiyama by Peter W. Jones.- Preface.- Introduction.- Lipschitz spaces and BMO.- Atomic H p sapces.- Atomic decomposition from grand maximal functions.- Atomic decomposition from S functions.- Hardy-Littlewood-Fefferman-Stein type inequalities, 1.- Hardy-Littlewood-Fefferman-Stein type inequalities, 2.- Hardy-Littlewood-Fefferman-Stein type inequalities, 3.- Grand maximal function from radial maximal functions.- S -functions from g -functions Good lambda inequalities for nontangential maximal functions and S -functions of harmonic functions.- A direct proof (special characters).- A direct proof of (special characters).- Subharmonicity 1.- Subharmonicity 2.- Preliminaries for characterizations of H in terms of Fourier multipliers.- Characterization of H p in terms of Riesz transforms.- Other results on the characterization of H p in terms of Fourier multipliers.- Fefferman's original proof of (special characters).- Varopoulos's proof of the above inequality.- The Fefferman-Stein decomposition of BMO.- A constructive proof of the Fefferman-Stein decomposition of BMO.- Vector-valued unimodular BMO functions.- Extensions of the Fefferman-Stein decomposition of BMO, 1.- Characterization of H 1 in terms of Fourier multipliers.- Extension of the Fefferman-Stein decomposition of BMO, 2.- Characterization of H p in terms of Fourier multipliers.- The one-dimensional case.- Appendix.- References.- Index.Aus dem Inhalt: - Foreword - Recollections of My Good Friend, Akihito Uchiyama by Peter W. Jones - Preface - Introduction - Lipschitz spaces and BMO - Atomic Hp spaces - Atomic decomposition from grand maximal functions - Atomic decomposition from S functions - Hardy-Littlewood-Fefferman-Stein type inequalities, 1 - Hardy-Littlewood-Fefferman-Stein type inequalities, 2 - Hardy-Littlewood-Fefferman-Stein type inequalities, 3 - Grand maximal function from radial maximal functions - S-functions from g-functions Good lambda inequalities for nontangential maximal functions and S-functions of harmonic functions - A direct proof (special characters) - A direct proof of (special characters) - Subharmonicity 1 - Subharmonicity 2 - Preliminaries for characterizations of H in terms of Fourier multipliers - Characterization of Hp in terms of Riesz transforms - Other results on the characterization of Hp in terms of Fourier multipliers - Fefferman's original proof of (special characters) - Varopoulos's proof of the above inequality - The Fefferman-Stein decomposition of BMO - A constructive proof of the Fefferman-Stein decomposition of BMO - Vector-valued unimodular BMO functions - Extensions of the Fefferman-Stein decomposition of BMO, 1 - Characterization of H1 in terms of Fourier multipliers - Extension of the Fefferman-Stein decomposition of BMO, 2 - Characterization of Hp in terms of Fourier multipliers - The one-dimensional case - Appendix - References - Index
Foreword.- Recollections of My Good Friend, Akihito Uchiyama by Peter W. Jones.- Preface.- Introduction.- Lipschitz spaces and BMO.- Atomic H p sapces.- Atomic decomposition from grand maximal functions.- Atomic decomposition from S functions.- Hardy-Littlewood-Fefferman-Stein type inequalities, 1.- Hardy-Littlewood-Fefferman-Stein type inequalities, 2.- Hardy-Littlewood-Fefferman-Stein type inequalities, 3.- Grand maximal function from radial maximal functions.- S -functions from g -functions Good lambda inequalities for nontangential maximal functions and S -functions of harmonic functions.- A direct proof (special characters).- A direct proof of (special characters).- Subharmonicity 1.- Subharmonicity 2.- Preliminaries for characterizations of H in terms of Fourier multipliers.- Characterization of H p in terms of Riesz transforms.- Other results on the characterization of H p in terms of Fourier multipliers.- Fefferman's original proof of (special characters).- Varopoulos's proof of the above inequality.- The Fefferman-Stein decomposition of BMO.- A constructive proof of the Fefferman-Stein decomposition of BMO.- Vector-valued unimodular BMO functions.- Extensions of the Fefferman-Stein decomposition of BMO, 1.- Characterization of H 1 in terms of Fourier multipliers.- Extension of the Fefferman-Stein decomposition of BMO, 2.- Characterization of H p in terms of Fourier multipliers.- The one-dimensional case.- Appendix.- References.- Index.Aus dem Inhalt: - Foreword - Recollections of My Good Friend, Akihito Uchiyama by Peter W. Jones - Preface - Introduction - Lipschitz spaces and BMO - Atomic Hp spaces - Atomic decomposition from grand maximal functions - Atomic decomposition from S functions - Hardy-Littlewood-Fefferman-Stein type inequalities, 1 - Hardy-Littlewood-Fefferman-Stein type inequalities, 2 - Hardy-Littlewood-Fefferman-Stein type inequalities, 3 - Grand maximal function from radial maximal functions - S-functions from g-functions Good lambda inequalities for nontangential maximal functions and S-functions of harmonic functions - A direct proof (special characters) - A direct proof of (special characters) - Subharmonicity 1 - Subharmonicity 2 - Preliminaries for characterizations of H in terms of Fourier multipliers - Characterization of Hp in terms of Riesz transforms - Other results on the characterization of Hp in terms of Fourier multipliers - Fefferman's original proof of (special characters) - Varopoulos's proof of the above inequality - The Fefferman-Stein decomposition of BMO - A constructive proof of the Fefferman-Stein decomposition of BMO - Vector-valued unimodular BMO functions - Extensions of the Fefferman-Stein decomposition of BMO, 1 - Characterization of H1 in terms of Fourier multipliers - Extension of the Fefferman-Stein decomposition of BMO, 2 - Characterization of Hp in terms of Fourier multipliers - The one-dimensional case - Appendix - References - Index







