C. A. Rogers
Hausdorff Measures
C. A. Rogers
Hausdorff Measures
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Classic book on measure theory with a foreword by the best name in the field.
Andere Kunden interessierten sich auch für
Velimir JurdjevicGeometric Control Theory83,99 €
Janet Whalen KammeyerRestricted Orbit Equivalence for Actions of Discrete Amenable Groups46,99 €
I. J. MaddoxElements of Functional Analysis63,99 €
Thomas BreuerCharacters and Automorphism Groups of Compact Riemann Surfaces62,99 €
Washek F. PfefferDerivation and Integration49,99 €
Sergio AlbeverioSingular Perturbations of Differential Operators69,99 €
C. CorduneanuIntegral Equations and Applications51,99 €-
-
-
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Revised
- Seitenzahl: 228
- Erscheinungstermin: 31. März 2007
- Englisch
- Abmessung: 229mm x 152mm x 14mm
- Gewicht: 377g
- ISBN-13: 9780521624916
- ISBN-10: 0521624916
- Artikelnr.: 22826556
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Revised
- Seitenzahl: 228
- Erscheinungstermin: 31. März 2007
- Englisch
- Abmessung: 229mm x 152mm x 14mm
- Gewicht: 377g
- ISBN-13: 9780521624916
- ISBN-10: 0521624916
- Artikelnr.: 22826556
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Foreword Kenneth Falconer
Preface
Part I. Measures in Abstract, Topological and Metric Spaces: 1. Introduction
2. Measures in abstract spaces
3. Measures in topological spaces
4. Measures in metric spaces
5. Lebesgue measure in n-dimensional Euclidean space
6. Metric measures in topological spaces
7. The Souslin operation
Part II. Hausdorff Measures: 8. Definition of Hausdorff measures and equivalent definitions
9. Mappings, special Hausdorff measures, surface areas
10. Existence theorems
11. Comparison theorems
12. Souslin sets
13. The increasing sets lemma and its consequences
14. The existence of comparable net measures and their properties
15. Sets of non-¿-finite measure
Part III. Applications of Hausdorff Measures: 16. A survey of applications of Hausdorff measures
17. Sets of real numbers defined in terms of their expansions into continued fractions
18. The space of non-decreasing continuous functions defined on the closed unit interval
Bibliography
Appendix
Index.
Preface
Part I. Measures in Abstract, Topological and Metric Spaces: 1. Introduction
2. Measures in abstract spaces
3. Measures in topological spaces
4. Measures in metric spaces
5. Lebesgue measure in n-dimensional Euclidean space
6. Metric measures in topological spaces
7. The Souslin operation
Part II. Hausdorff Measures: 8. Definition of Hausdorff measures and equivalent definitions
9. Mappings, special Hausdorff measures, surface areas
10. Existence theorems
11. Comparison theorems
12. Souslin sets
13. The increasing sets lemma and its consequences
14. The existence of comparable net measures and their properties
15. Sets of non-¿-finite measure
Part III. Applications of Hausdorff Measures: 16. A survey of applications of Hausdorff measures
17. Sets of real numbers defined in terms of their expansions into continued fractions
18. The space of non-decreasing continuous functions defined on the closed unit interval
Bibliography
Appendix
Index.
Foreword Kenneth Falconer
Preface
Part I. Measures in Abstract, Topological and Metric Spaces: 1. Introduction
2. Measures in abstract spaces
3. Measures in topological spaces
4. Measures in metric spaces
5. Lebesgue measure in n-dimensional Euclidean space
6. Metric measures in topological spaces
7. The Souslin operation
Part II. Hausdorff Measures: 8. Definition of Hausdorff measures and equivalent definitions
9. Mappings, special Hausdorff measures, surface areas
10. Existence theorems
11. Comparison theorems
12. Souslin sets
13. The increasing sets lemma and its consequences
14. The existence of comparable net measures and their properties
15. Sets of non-¿-finite measure
Part III. Applications of Hausdorff Measures: 16. A survey of applications of Hausdorff measures
17. Sets of real numbers defined in terms of their expansions into continued fractions
18. The space of non-decreasing continuous functions defined on the closed unit interval
Bibliography
Appendix
Index.
Preface
Part I. Measures in Abstract, Topological and Metric Spaces: 1. Introduction
2. Measures in abstract spaces
3. Measures in topological spaces
4. Measures in metric spaces
5. Lebesgue measure in n-dimensional Euclidean space
6. Metric measures in topological spaces
7. The Souslin operation
Part II. Hausdorff Measures: 8. Definition of Hausdorff measures and equivalent definitions
9. Mappings, special Hausdorff measures, surface areas
10. Existence theorems
11. Comparison theorems
12. Souslin sets
13. The increasing sets lemma and its consequences
14. The existence of comparable net measures and their properties
15. Sets of non-¿-finite measure
Part III. Applications of Hausdorff Measures: 16. A survey of applications of Hausdorff measures
17. Sets of real numbers defined in terms of their expansions into continued fractions
18. The space of non-decreasing continuous functions defined on the closed unit interval
Bibliography
Appendix
Index.







