This text is concerned with the concept that our mathematical knowledge is inexhaustible. Basic material in predicate logic, set theory and recursion theory is presented, leading to a proof of incompleteness theorems. Gödel's Incompleteness Theorems are among the most significant results in the foundation of mathematics
This text is concerned with the concept that our mathematical knowledge is inexhaustible. Basic material in predicate logic, set theory and recursion theory is presented, leading to a proof of incompleteness theorems.Gödel's Incompleteness Theorems are among the most significant results in the foundation of mathematics
Torkel Franzén Department of Computer Science and Electrical Engineering Lule, University of Technology
Inhaltsangabe
CHAPTER l. INTRODUCTION . CHAPTER 2. ARITHMETICAL PRELIMINARIES CHAPTER 3. PRIMES AND PROOFS . CHAPTER 4. THE LANGUAGE OF ARITHMETIC CHAPTER 5. THE LANGUAGE OF ANALYSIS CHAPTER 6. ORDINALS AND INDUCTIVE DEFINITIONS. CHAPTER 7. FORMAL LANGUAGES AND THE DEFINITION OF TRUTH CHAPTER 8. LOGICC AND THEORIES. CHAPTER 9. PEA.NO ARTHMETIC AND COMPUTABILl1Y CHAPTER 9. PEA.NO ARTHMETIC AND COMPUTABILl1Y CHAPTER 10. ELEMENTARY AND CLASSICAL ANALYSIS CHAPTER 11. THE RECURSION THEOREM AND ORDINAL NOTATIONS CHAPTER 12. THE INCOMPLETENESS THEOREMS CHAPTER 13. ITERATED CONSISTENCY CHAPTER 14. ITERATED REFLECTION CHAPTER 15. ITERATED ITERATION AND INEXHAUSTIBILITY
CHAPTER l. INTRODUCTION . CHAPTER 2. ARITHMETICAL PRELIMINARIES CHAPTER 3. PRIMES AND PROOFS . CHAPTER 4. THE LANGUAGE OF ARITHMETIC CHAPTER 5. THE LANGUAGE OF ANALYSIS CHAPTER 6. ORDINALS AND INDUCTIVE DEFINITIONS. CHAPTER 7. FORMAL LANGUAGES AND THE DEFINITION OF TRUTH CHAPTER 8. LOGICC AND THEORIES. CHAPTER 9. PEA.NO ARTHMETIC AND COMPUTABILl1Y CHAPTER 9. PEA.NO ARTHMETIC AND COMPUTABILl1Y CHAPTER 10. ELEMENTARY AND CLASSICAL ANALYSIS CHAPTER 11. THE RECURSION THEOREM AND ORDINAL NOTATIONS CHAPTER 12. THE INCOMPLETENESS THEOREMS CHAPTER 13. ITERATED CONSISTENCY CHAPTER 14. ITERATED REFLECTION CHAPTER 15. ITERATED ITERATION AND INEXHAUSTIBILITY
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826