Victor G. Kac
Infinite-Dimensional Lie Algebras
Victor G. Kac
Infinite-Dimensional Lie Algebras
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This is the third, substantially revised edition of this important monograph and graduate text.
Andere Kunden interessierten sich auch für
- Neelacanta SthanumoorthyIntroduction to Finite and Infinite Dimensional Lie (Super)algebras95,99 €
- D. B. FuksCohomology of Infinite-Dimensional Lie Algebras43,99 €
- Developments and Trends in Infinite-Dimensional Lie Theory112,99 €
- Jurgen FuchsAffine Lie Algebras and Quantum Groups92,99 €
- Alexander KirillovAn Introduction to Lie Groups and Lie Algebras38,99 €
- Roger CarterLie Algebras of Finite and Affine Type125,99 €
- Meinolf GeckThe Character Theory of Finite Groups of Lie Type65,99 €
-
-
-
This is the third, substantially revised edition of this important monograph and graduate text.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- 3. Auflage
- Seitenzahl: 424
- Erscheinungstermin: 13. Januar 2002
- Englisch
- Abmessung: 229mm x 152mm x 25mm
- Gewicht: 685g
- ISBN-13: 9780521466936
- ISBN-10: 0521466938
- Artikelnr.: 21122392
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- 3. Auflage
- Seitenzahl: 424
- Erscheinungstermin: 13. Januar 2002
- Englisch
- Abmessung: 229mm x 152mm x 25mm
- Gewicht: 685g
- ISBN-13: 9780521466936
- ISBN-10: 0521466938
- Artikelnr.: 21122392
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Introduction
Notational conventions
1. Basic definitions
2. The invariant bilinear form and the generalized casimir operator
3. Integrable representations of Kac-Moody algebras and the weyl group
4. A classification of generalized cartan matrices
5. Real and imaginary roots
6. Affine algebras: the normalized cartan invariant form, the root system, and the weyl group
7. Affine algebras as central extensions of loop algebras
8. Twisted affine algebras and finite order automorphisms
9. Highest-weight modules over Kac-Moody algebras
10. Integrable highest-weight modules: the character formula
11. Integrable highest-weight modules: the weight system and the unitarizability
12. Integrable highest-weight modules over affine algebras
13. Affine algebras, theta functions, and modular forms
14. The principal and homogeneous vertex operator constructions of the basic representation
Index of notations and definitions
References
Conference proceedings and collections of paper.
Notational conventions
1. Basic definitions
2. The invariant bilinear form and the generalized casimir operator
3. Integrable representations of Kac-Moody algebras and the weyl group
4. A classification of generalized cartan matrices
5. Real and imaginary roots
6. Affine algebras: the normalized cartan invariant form, the root system, and the weyl group
7. Affine algebras as central extensions of loop algebras
8. Twisted affine algebras and finite order automorphisms
9. Highest-weight modules over Kac-Moody algebras
10. Integrable highest-weight modules: the character formula
11. Integrable highest-weight modules: the weight system and the unitarizability
12. Integrable highest-weight modules over affine algebras
13. Affine algebras, theta functions, and modular forms
14. The principal and homogeneous vertex operator constructions of the basic representation
Index of notations and definitions
References
Conference proceedings and collections of paper.
Introduction
Notational conventions
1. Basic definitions
2. The invariant bilinear form and the generalized casimir operator
3. Integrable representations of Kac-Moody algebras and the weyl group
4. A classification of generalized cartan matrices
5. Real and imaginary roots
6. Affine algebras: the normalized cartan invariant form, the root system, and the weyl group
7. Affine algebras as central extensions of loop algebras
8. Twisted affine algebras and finite order automorphisms
9. Highest-weight modules over Kac-Moody algebras
10. Integrable highest-weight modules: the character formula
11. Integrable highest-weight modules: the weight system and the unitarizability
12. Integrable highest-weight modules over affine algebras
13. Affine algebras, theta functions, and modular forms
14. The principal and homogeneous vertex operator constructions of the basic representation
Index of notations and definitions
References
Conference proceedings and collections of paper.
Notational conventions
1. Basic definitions
2. The invariant bilinear form and the generalized casimir operator
3. Integrable representations of Kac-Moody algebras and the weyl group
4. A classification of generalized cartan matrices
5. Real and imaginary roots
6. Affine algebras: the normalized cartan invariant form, the root system, and the weyl group
7. Affine algebras as central extensions of loop algebras
8. Twisted affine algebras and finite order automorphisms
9. Highest-weight modules over Kac-Moody algebras
10. Integrable highest-weight modules: the character formula
11. Integrable highest-weight modules: the weight system and the unitarizability
12. Integrable highest-weight modules over affine algebras
13. Affine algebras, theta functions, and modular forms
14. The principal and homogeneous vertex operator constructions of the basic representation
Index of notations and definitions
References
Conference proceedings and collections of paper.