Miroslav Svitek (Professor, Czech Technical University, Prague, Cze
Information Physics
Physics-Information and Quantum Analogies for Complex Systems Modeling
Schade – dieser Artikel ist leider ausverkauft. Sobald wir wissen, ob und wann der Artikel wieder verfügbar ist, informieren wir Sie an dieser Stelle.
Miroslav Svitek (Professor, Czech Technical University, Prague, Cze
Information Physics
Physics-Information and Quantum Analogies for Complex Systems Modeling
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Information Physics: Physics-Information and Quantum Analogies for Complex Modeling presents a new theory of complex systems that uses analogy across various aspects of physics, including electronics, magnetic circuits and quantum mechanics. The book explains the quantum approach to system theory that can be understood as an extension of classical system models. The main idea is that in many complex systems there are incomplete pieces of overlapping information that must be strung together to find the most consistent model. This incomplete information can be understood as a set of…mehr
Andere Kunden interessierten sich auch für
- Robert A. Pease (National Semiconductor Corporation)Troubleshooting Analog Circuits71,99 €
- Walt JungOp Amp Applications Handbook88,99 €
- R.K. Pathria (Theoretical Physicist, University of California, SanStatistical Mechanics115,99 €
- David A. Patterson (Pardee Professor of Computer Science, Emeritus,Computer Organization and Design MIPS Edition108,99 €
- Jiawei Han (Department of Computer ScienceUniversity of ProfessorData Mining95,99 €
- Antonella Cupillari (Pennsylvan Associate Professor of MathematicsThe Nuts and Bolts of Proofs65,99 €
- John Campbell (University Professor Emeritus of Casting TechnologyComplete Casting Handbook142,99 €
-
-
-
Information Physics: Physics-Information and Quantum Analogies for Complex Modeling presents a new theory of complex systems that uses analogy across various aspects of physics, including electronics, magnetic circuits and quantum mechanics. The book explains the quantum approach to system theory that can be understood as an extension of classical system models. The main idea is that in many complex systems there are incomplete pieces of overlapping information that must be strung together to find the most consistent model. This incomplete information can be understood as a set of non-exclusive observer results. Because they are non-exclusive, each observer registers different pictures of reality.
Produktdetails
- Produktdetails
- Verlag: Elsevier Science & Technology
- Seitenzahl: 154
- Erscheinungstermin: 14. Juni 2021
- Englisch
- Abmessung: 191mm x 232mm x 19mm
- Gewicht: 338g
- ISBN-13: 9780323910118
- ISBN-10: 0323910114
- Artikelnr.: 60598514
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Elsevier Science & Technology
- Seitenzahl: 154
- Erscheinungstermin: 14. Juni 2021
- Englisch
- Abmessung: 191mm x 232mm x 19mm
- Gewicht: 338g
- ISBN-13: 9780323910118
- ISBN-10: 0323910114
- Artikelnr.: 60598514
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Dr. Miroslav Svitek is a full professor in Engineering Informatics at Faculty of Transportation Sciences, Czech Technical University in Prague. He has been the Dean of Faculty of Transportation Sciences, Czech Technical University. Since 2018, he has been a Visiting Professor in Smart Cities at University of Texas at El Paso, USA. The focus of his research includes complex system sciences and their practical applications to Intelligent Transport Systems, Smart Cities and Smart Regions. He is the author or co-author of more than 200 scientific papers and 10 books, including Quantum System Theory: Principles and Applications and Stochastic Processes: Estimation, Optimisation, and Analysis. He received his Ph.D. in radioelectronics at Faculty of Electrical Engineering, Czech Technical University. In 2005, he was been nominated as the extraordinary professor in applied informatics at Faculty of Natural Sciences, University of Matej Bel in Banska Bystrica, Slovak Republic. In 2008, Dr. Svítek was the first president of the Czech Smart City Cluster, and he is a member of the Engineering Academy of the Czech Republic. In 2006 - 2018, he served as President of the Association of Transport Telematics
1. Introduction to Information Physics 1.1 Dynamical systems1.2 Information
representation1.3 Information source and recipient1.4 Information gate1.5
Information perception1.6 Information scenarios1.7 Information channel
2. Classical Physics - Information Analogies 2.1 Electrics - information
analogies 2.2 Magnetic - information analogies 2.3 Information elements2.4
Extended information elements 2.5 Information mem-elements
3. Information circuits3.1 Telematics 3.2 Brain adaptive resonance 3.3
Knowledge cycle
4. Quantum Physics - Information Analogies 4.1 Quantum events 4.2 Quantum
objects 4.3 Two (non-)exclusive observers4.4 Composition of quantum
objects4.5 Mixture of partial quantum information4.6 Time-varying quantum
objects 4.7 Quantum information coding and decoding 4.8 Quantum data flow
rate4.9 Holographic approach to phase parameters4.10 Two (non-)
distinguished quantum subsystems 4.11 Quantum information gate4.12 Quantum
learning
5 Features of Quantum Information 5.1 Quantization 5.2 Quantum entanglement
5.3 Quantum environment 5.4 Quantum identity 5.5 Quantum self-organization
5.6 Quantum interference 5.7 Distance between wave components 5.8
Interaction's speed between wave components 5.9 Component strength5.10
Quantum node6. Composition rules of quantum subsystems6.1 Connected
subsystems6.2 Disconnected subsystems6.3 Coexisted subsystems6.4
Symmetrically disconnected subsystems6.5 Symmetrically competing
subsystems6.6 Interactions with an environment6.7 Illustrative examples
7. Applicability of quantum models7.1 Quantum processes7.2 Quantum model of
hierarchical networks7.3 Time-varying quantum systems7.4 Quantum
information gyrator7.5 Quantum transfer functions
8. Extended quantum models8.1 Ordering models8.2 Incremental models8.3
Inserted models}8.4 Intersectional extended models
9. Complex adaptive systems 9.1 Basic agent of smart services9.2 Smart
resilient cities9.3 Intelligent transport systemts9.4 Ontology and
multiagent technologies
10. Conclusion
representation1.3 Information source and recipient1.4 Information gate1.5
Information perception1.6 Information scenarios1.7 Information channel
2. Classical Physics - Information Analogies 2.1 Electrics - information
analogies 2.2 Magnetic - information analogies 2.3 Information elements2.4
Extended information elements 2.5 Information mem-elements
3. Information circuits3.1 Telematics 3.2 Brain adaptive resonance 3.3
Knowledge cycle
4. Quantum Physics - Information Analogies 4.1 Quantum events 4.2 Quantum
objects 4.3 Two (non-)exclusive observers4.4 Composition of quantum
objects4.5 Mixture of partial quantum information4.6 Time-varying quantum
objects 4.7 Quantum information coding and decoding 4.8 Quantum data flow
rate4.9 Holographic approach to phase parameters4.10 Two (non-)
distinguished quantum subsystems 4.11 Quantum information gate4.12 Quantum
learning
5 Features of Quantum Information 5.1 Quantization 5.2 Quantum entanglement
5.3 Quantum environment 5.4 Quantum identity 5.5 Quantum self-organization
5.6 Quantum interference 5.7 Distance between wave components 5.8
Interaction's speed between wave components 5.9 Component strength5.10
Quantum node6. Composition rules of quantum subsystems6.1 Connected
subsystems6.2 Disconnected subsystems6.3 Coexisted subsystems6.4
Symmetrically disconnected subsystems6.5 Symmetrically competing
subsystems6.6 Interactions with an environment6.7 Illustrative examples
7. Applicability of quantum models7.1 Quantum processes7.2 Quantum model of
hierarchical networks7.3 Time-varying quantum systems7.4 Quantum
information gyrator7.5 Quantum transfer functions
8. Extended quantum models8.1 Ordering models8.2 Incremental models8.3
Inserted models}8.4 Intersectional extended models
9. Complex adaptive systems 9.1 Basic agent of smart services9.2 Smart
resilient cities9.3 Intelligent transport systemts9.4 Ontology and
multiagent technologies
10. Conclusion
1. Introduction to Information Physics 1.1 Dynamical systems1.2 Information
representation1.3 Information source and recipient1.4 Information gate1.5
Information perception1.6 Information scenarios1.7 Information channel
2. Classical Physics - Information Analogies 2.1 Electrics - information
analogies 2.2 Magnetic - information analogies 2.3 Information elements2.4
Extended information elements 2.5 Information mem-elements
3. Information circuits3.1 Telematics 3.2 Brain adaptive resonance 3.3
Knowledge cycle
4. Quantum Physics - Information Analogies 4.1 Quantum events 4.2 Quantum
objects 4.3 Two (non-)exclusive observers4.4 Composition of quantum
objects4.5 Mixture of partial quantum information4.6 Time-varying quantum
objects 4.7 Quantum information coding and decoding 4.8 Quantum data flow
rate4.9 Holographic approach to phase parameters4.10 Two (non-)
distinguished quantum subsystems 4.11 Quantum information gate4.12 Quantum
learning
5 Features of Quantum Information 5.1 Quantization 5.2 Quantum entanglement
5.3 Quantum environment 5.4 Quantum identity 5.5 Quantum self-organization
5.6 Quantum interference 5.7 Distance between wave components 5.8
Interaction's speed between wave components 5.9 Component strength5.10
Quantum node6. Composition rules of quantum subsystems6.1 Connected
subsystems6.2 Disconnected subsystems6.3 Coexisted subsystems6.4
Symmetrically disconnected subsystems6.5 Symmetrically competing
subsystems6.6 Interactions with an environment6.7 Illustrative examples
7. Applicability of quantum models7.1 Quantum processes7.2 Quantum model of
hierarchical networks7.3 Time-varying quantum systems7.4 Quantum
information gyrator7.5 Quantum transfer functions
8. Extended quantum models8.1 Ordering models8.2 Incremental models8.3
Inserted models}8.4 Intersectional extended models
9. Complex adaptive systems 9.1 Basic agent of smart services9.2 Smart
resilient cities9.3 Intelligent transport systemts9.4 Ontology and
multiagent technologies
10. Conclusion
representation1.3 Information source and recipient1.4 Information gate1.5
Information perception1.6 Information scenarios1.7 Information channel
2. Classical Physics - Information Analogies 2.1 Electrics - information
analogies 2.2 Magnetic - information analogies 2.3 Information elements2.4
Extended information elements 2.5 Information mem-elements
3. Information circuits3.1 Telematics 3.2 Brain adaptive resonance 3.3
Knowledge cycle
4. Quantum Physics - Information Analogies 4.1 Quantum events 4.2 Quantum
objects 4.3 Two (non-)exclusive observers4.4 Composition of quantum
objects4.5 Mixture of partial quantum information4.6 Time-varying quantum
objects 4.7 Quantum information coding and decoding 4.8 Quantum data flow
rate4.9 Holographic approach to phase parameters4.10 Two (non-)
distinguished quantum subsystems 4.11 Quantum information gate4.12 Quantum
learning
5 Features of Quantum Information 5.1 Quantization 5.2 Quantum entanglement
5.3 Quantum environment 5.4 Quantum identity 5.5 Quantum self-organization
5.6 Quantum interference 5.7 Distance between wave components 5.8
Interaction's speed between wave components 5.9 Component strength5.10
Quantum node6. Composition rules of quantum subsystems6.1 Connected
subsystems6.2 Disconnected subsystems6.3 Coexisted subsystems6.4
Symmetrically disconnected subsystems6.5 Symmetrically competing
subsystems6.6 Interactions with an environment6.7 Illustrative examples
7. Applicability of quantum models7.1 Quantum processes7.2 Quantum model of
hierarchical networks7.3 Time-varying quantum systems7.4 Quantum
information gyrator7.5 Quantum transfer functions
8. Extended quantum models8.1 Ordering models8.2 Incremental models8.3
Inserted models}8.4 Intersectional extended models
9. Complex adaptive systems 9.1 Basic agent of smart services9.2 Smart
resilient cities9.3 Intelligent transport systemts9.4 Ontology and
multiagent technologies
10. Conclusion