27,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
14 °P sammeln
  • Broschiertes Buch

Insecticide resistance is a common phenomenon among insects all over the world. Insects have different mechanisms to avoid toxic effects of insecticides. Metabolic resistance is of one of the common mechanisms among insects. This manuscript highlight the role of insecticide detoxifying enzymes (ie., Esterases, Glutathion S-transferases and Monooxygenases) in developing resistance in insects. Fruit fly, Bactocera dorsalis, was used a a model organism. It was concluded from the study that resistance development is a complex process, no single mechanism can explain this phenomenon alone. So there…mehr

Produktbeschreibung
Insecticide resistance is a common phenomenon among insects all over the world. Insects have different mechanisms to avoid toxic effects of insecticides. Metabolic resistance is of one of the common mechanisms among insects. This manuscript highlight the role of insecticide detoxifying enzymes (ie., Esterases, Glutathion S-transferases and Monooxygenases) in developing resistance in insects. Fruit fly, Bactocera dorsalis, was used a a model organism. It was concluded from the study that resistance development is a complex process, no single mechanism can explain this phenomenon alone. So there is need for further studies to take other mechanisms into account, in order to describe the mechanism of insecticide resistance in Bactrocera dorsalis, comprehensively.
Autorenporträt
O Dr. Hafiz Muhammad Tahir trabalha como Professor Assistente no Departamento de Zoologia da Universidade de Sargodha, Paquistão, desde 2010. O Dr. Tahir obteve o seu doutoramento na Universidade do Punjab, Lahore, e o seu pós-doutoramento no Museu Americano de História Natural, Nova Iorque, EUA. Publicou mais de 75 artigos de investigação em revistas de renome.