Intelligent Data-Analytics for Condition Monitoring: Smart Grid Applications looks at intelligent and meaningful uses of data required for an optimized, efficient engineering processes. In addition, the book provides application perspectives of various deep learning models for the condition monitoring of electrical equipment. With chapters discussing the fundamentals of machine learning and data analytics, the book is divided into two parts, including i) The application of intelligent data analytics in Solar PV fault diagnostics, transformer health monitoring and faults diagnostics, and…mehr
Intelligent Data-Analytics for Condition Monitoring: Smart Grid Applications looks at intelligent and meaningful uses of data required for an optimized, efficient engineering processes. In addition, the book provides application perspectives of various deep learning models for the condition monitoring of electrical equipment. With chapters discussing the fundamentals of machine learning and data analytics, the book is divided into two parts, including i) The application of intelligent data analytics in Solar PV fault diagnostics, transformer health monitoring and faults diagnostics, and induction motor faults and ii) Forecasting issues using data analytics which looks at global solar radiation forecasting, wind data forecasting, and more.
This reference is useful for all engineers and researchers who need preliminary knowledge on data analytics fundamentals and the working methodologies and architecture of smart grid systems.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Dr. Hasmat Malik received his Diploma in Electrical Engineering from Aryabhatt Govt. Polytechnic Delhi, B.Tech. degree in electrical & electronics engineering from the GGSIP University, Delhi, M.Tech degree in electrical engineering from National Institute of Technology (NIT) Hamirpur, Himachal Pradesh, and Ph.D in power systems from the Electrical Engineering Department, Indian Institute of Technology (IIT) Delhi, India. He is currently a Postdoctoral Scholar at BEARS, University Town, NUS Campus, Singapore, and an Assistant Professor (on-Leave) at the Division of Instrumentation and Control Engineering, Netaji Subhas University of Technology Delhi, India. A member of various societies, Dr. Malik has published over 100 research articles, including papers in international journals, conferences, and book chapters. He was a Guest Editor of Special Issues of the Journal of Intelligent & Fuzzy Systems, in 2018 and 2020. Dr. Malik has supervised 23 postgraduate students and is involved
in several large R&D projects. His principal research interests are artificial intelligence, machine learning, and big-data analytics for renewable energy, smart building & automation, condition monitoring, and online fault detection & diagnosis (FDD).
Inhaltsangabe
1. Advances in Machine Learning and Data Analytics
PART A: Intelligent Data Analytics for Classification in Smart Grid2. Intelligent Data Analytics for PV Fault diagnosis Using Deep Convolutional Neural Network (ConvNet/CNN)3. Intelligent Data Analytics for Power Transformer Health Monitoring Using Modified Fuzzy Q Learning (MFQL)4. Intelligent Data Analytics for Induction Motor Using Gene Expression Programming (GEP)5. Intelligent Data Analytics for Power Quality Disturbance Analysis Using Multi-Class ELM6. Intelligent Data Analytics for Transmission Line Fault Diagnosis Using EEMD Based Multiclass SVM and PSVM
PART B: Intelligent Data Analytics for Forecasting in Smart Grid7. Intelligent Data Analytics for Global Solar Radiation Forecasting for Solar Power Production Using Deep Learning Neural Network (DLNN)8. Intelligent Data Analytics for Wind Speed Forecasting for Wind Power Production Using Long Short-Term memory (LSTM) Network9. Intelligent Data Analytics for Time-Series Load Forecasting Using Fuzzy Reinforcement Learning (FRL)10. Intelligent Data Analytics for Battery Charging/Discharging Forecasting Using Semi-supervised and Unsupervised Extreme Learning Machines
1. Advances in Machine Learning and Data Analytics
PART A: Intelligent Data Analytics for Classification in Smart Grid2. Intelligent Data Analytics for PV Fault diagnosis Using Deep Convolutional Neural Network (ConvNet/CNN)3. Intelligent Data Analytics for Power Transformer Health Monitoring Using Modified Fuzzy Q Learning (MFQL)4. Intelligent Data Analytics for Induction Motor Using Gene Expression Programming (GEP)5. Intelligent Data Analytics for Power Quality Disturbance Analysis Using Multi-Class ELM6. Intelligent Data Analytics for Transmission Line Fault Diagnosis Using EEMD Based Multiclass SVM and PSVM
PART B: Intelligent Data Analytics for Forecasting in Smart Grid7. Intelligent Data Analytics for Global Solar Radiation Forecasting for Solar Power Production Using Deep Learning Neural Network (DLNN)8. Intelligent Data Analytics for Wind Speed Forecasting for Wind Power Production Using Long Short-Term memory (LSTM) Network9. Intelligent Data Analytics for Time-Series Load Forecasting Using Fuzzy Reinforcement Learning (FRL)10. Intelligent Data Analytics for Battery Charging/Discharging Forecasting Using Semi-supervised and Unsupervised Extreme Learning Machines
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826