173,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
87 °P sammeln
  • Broschiertes Buch

Intelligent Fault Detection and Diagnosis Techniques for Monitoring Wind and Solar Energy Systems provides innovative solutions for fault detection and diagnosis in renewable energy systems. By leveraging advanced AI-based techniques such as deep learning, multiscale representation, and statistical analysis, this book aims to enhance system reliability, performance, and cost-efficiency. Readers will gain insights into the fundamentals of FDD processes tailored for photovoltaic and wind turbine operations. The book delves into data preprocessing techniques, feature extraction and selection…mehr

Produktbeschreibung
Intelligent Fault Detection and Diagnosis Techniques for Monitoring Wind and Solar Energy Systems provides innovative solutions for fault detection and diagnosis in renewable energy systems. By leveraging advanced AI-based techniques such as deep learning, multiscale representation, and statistical analysis, this book aims to enhance system reliability, performance, and cost-efficiency. Readers will gain insights into the fundamentals of FDD processes tailored for photovoltaic and wind turbine operations. The book delves into data preprocessing techniques, feature extraction and selection methods, and optimization of deep learning models. It also includes case studies and explores future directions for AI and machine learning in renewable energy, making it valuable for researchers, engineers, and policy makers.
Autorenporträt
Dr. Majdi Mansouri is an Associate Professor, at the Department of Electrical and Computer Engineering, Sultan Qaboos University, in the Sultanate of Oman. A Senior Member of the IEEE, he received this Ph.D. degree in electrical engineering from the University of Technology of Troyes (UTT), France, in 2011, and the H.D.R. degree (accreditation to supervise research) in electrical engineering from the University of Orleans, France, in 2019. From 2011 to 2024, he held different research positions at Texas A&M University at Qatar, in Doha. Since September 2024, he has been with Sultan Qaboos University as an Associate Professor. Dr. Mansouri has authored more than 250 publications, as well as the book 'Data-Driven and Model-Based Methods for Fault Detection and Diagnosis' (Elsevier, 2020). His research interests include the development of model-based, data-driven, and AI-based techniques for fault detection and diagnosis.is a member of IEEE.