This book illustrates the range of tasks and design choices in current music generation research, applying machine learning techniques and highlighting recurring research issues such as training data, music representation, candidate generation, and evaluation. This book was first published as a special issue of the Journal of Mathematics and
This book illustrates the range of tasks and design choices in current music generation research, applying machine learning techniques and highlighting recurring research issues such as training data, music representation, candidate generation, and evaluation. This book was first published as a special issue of the Journal of Mathematics and
José M. Iñesta is a Professor in the Department of Software and Computing Systems at the Universidad de Alicante, Spain. Darrell Conklin is a Professor in the Department of Computer Science and Artificial Intelligence at the University of the Basque Country. Rafael Ramírez-Melendez is Associate Professor in the Music Technology Group in the Department of Information and Communication Technologies at the Universidad Pompeu Fabra, Barcelona, Spain. Thomas M. Fiore is Associate Professor of Mathematics at the University of Michigan-Dearborn, MI, USA.
Inhaltsangabe
Introduction: Machine learning and music generation 1. Chord sequence generation with semiotic patterns 2. A machine learning approach to ornamentation modeling and synthesis in jazz guitar 3. Analysis of analysis: Using machine learning to evaluate the importance of music parameters for Schenkerian analysis 4. Mapping between dynamic markings and performed loudness: a machine learning approach 5. Data-based melody generation through multi-objective evolutionary computation
Introduction: Machine learning and music generation 1. Chord sequence generation with semiotic patterns 2. A machine learning approach to ornamentation modeling and synthesis in jazz guitar 3. Analysis of analysis: Using machine learning to evaluate the importance of music parameters for Schenkerian analysis 4. Mapping between dynamic markings and performed loudness: a machine learning approach 5. Data-based melody generation through multi-objective evolutionary computation
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826