Statistical learning and analysis techniques have become extremely important today, given the tremendous growth in the size of heterogeneous data collections and the ability to process it even from physically distant locations. Recent advances made in the field of machine learning provide a strong framework for robust learning from the diverse corpora and continue to impact a variety of research problems across multiple scientific disciplines. The aim of this handbook is to familiarize beginners as well as experts with some of the recent techniques in this field.The Handbook is divided in two…mehr
Statistical learning and analysis techniques have become extremely important today, given the tremendous growth in the size of heterogeneous data collections and the ability to process it even from physically distant locations. Recent advances made in the field of machine learning provide a strong framework for robust learning from the diverse corpora and continue to impact a variety of research problems across multiple scientific disciplines. The aim of this handbook is to familiarize beginners as well as experts with some of the recent techniques in this field.The Handbook is divided in two sections: Theory and Applications, covering machine learning, data analytics, biometrics, document recognition and security.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Dr. Venu Govindaraju, SUNY Distinguished Professor of Computer Science and Engineering, is the Vice President of Research and Economic Development of the University at Buffalo and founding director of the Center for Unified Biometrics and Sensors. He received his Bachelor's degree with honors from the Indian Institute of Technology (IIT) in 1986, and his Ph.D. from UB in 1992. His research focus is on machine learning and pattern recognition in the domains of Document Image Analysis and Biometrics. Dr. Govindaraju has co-authored about 400 refereed scientific papers. His seminal work in handwriting recognition was at the core of the first handwritten address interpretation system used by the US Postal Service. He was also the prime technical lead responsible for technology transfer to the Postal Services in US, Australia, and UK. He has been a Principal or Co-Investigator of sponsored projects funded for about 65 million dollars. Dr. Govindaraju has supervised the dissertations of
30 doctoral students. He has served on the editorial boards of premier journals such as the IEEE Transactions on Pattern Analysis and Machine Intelligence and is currently the Editor-in-Chief of the IEEE Biometrics Council Compendium. Dr. Govindaraju is a Fellow of the ACM (Association of Computing Machinery), IEEE (Institute of Electrical and Electronics Engineers), AAAS (American Association for the Advancement of Science), the IAPR (International Association of Pattern Recognition), and the SPIE (International Society of Optics and Photonics). He is recipient of the 2004 MIT Global Indus Technovator award and the 2010 IEEE Technical Achievement award.
Inhaltsangabe
1. The Sequential Bootstrap2. The Cross-Entropy Method for Estimation3. The Cross-Entropy Method for Optimization4. Probability Collectives in Optimization5. Bagging, Boosting, and Random Forests Using R6. Matching Score Fusion Methods7. Statistical Methods on Special Manifolds for Image and Video Understanding8. Dictionary-based Methods for Object Recognition9. Conditional Random Fields for Scene Labeling10. Shape Based Image Classification and Retrieval11. Visual Search: A Large-Scale Perspective12. Video Activity Recognition by Luminance Differential Trajectory and Aligned Projection Distance13. Soft Biometrics for Surveillance: An Overview14. A User Behavior Monitoring and Profiling Scheme for Masquerade Detection 15. Application of Bayesian Graphical Models to Iris Recognition16. Learning Algorithms for Document Layout Analysis17. Hidden Markov Models for Off-Line Cursive Handwriting Recognition18. Machine Learning in Handwritten Arabic Text Recognition19. Manifold learning for the shape-based recognition of historical Arabic documents20. Query Suggestion with Large Scale Data
1. The Sequential Bootstrap2. The Cross-Entropy Method for Estimation3. The Cross-Entropy Method for Optimization4. Probability Collectives in Optimization5. Bagging, Boosting, and Random Forests Using R6. Matching Score Fusion Methods7. Statistical Methods on Special Manifolds for Image and Video Understanding8. Dictionary-based Methods for Object Recognition9. Conditional Random Fields for Scene Labeling10. Shape Based Image Classification and Retrieval11. Visual Search: A Large-Scale Perspective12. Video Activity Recognition by Luminance Differential Trajectory and Aligned Projection Distance13. Soft Biometrics for Surveillance: An Overview14. A User Behavior Monitoring and Profiling Scheme for Masquerade Detection 15. Application of Bayesian Graphical Models to Iris Recognition16. Learning Algorithms for Document Layout Analysis17. Hidden Markov Models for Off-Line Cursive Handwriting Recognition18. Machine Learning in Handwritten Arabic Text Recognition19. Manifold learning for the shape-based recognition of historical Arabic documents20. Query Suggestion with Large Scale Data
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826