- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Provides a comprehensive treatment of the theory of polynomials in a complex variable with matrix coefficients. Basic matrix theory can be viewed as the study of the special case of polynomials of first degree; the theory developed in Matrix Polynomials is a natural extension of this case to polynomials of higher degree.
Andere Kunden interessierten sich auch für
Stephen BarnettMatrices ' Methods and Applications'113,99 €
Michael HealyMatrices for Statistics89,99 €
Israel C. GohbergInvariant Subspaces of Matrices with Applications129,99 €
Eduardo CattaniHodge Theory115,99 €
Thomas TrogdonRiemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions88,99 €
Lori BarkerLeveled Texts for Mathematics29,99 €
Bradford Henry ArnoldLogic and Boolean Algebra11,99 €-
-
-
Provides a comprehensive treatment of the theory of polynomials in a complex variable with matrix coefficients. Basic matrix theory can be viewed as the study of the special case of polynomials of first degree; the theory developed in Matrix Polynomials is a natural extension of this case to polynomials of higher degree.
Produktdetails
- Produktdetails
- Verlag: Society for Industrial and Applied Mathematics (SIAM)
- Siam Classics edition
- Seitenzahl: 184
- Erscheinungstermin: 23. Juli 2009
- Englisch
- Abmessung: 247mm x 170mm x 22mm
- Gewicht: 590g
- ISBN-13: 9780898716818
- ISBN-10: 0898716810
- Artikelnr.: 54374260
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Society for Industrial and Applied Mathematics (SIAM)
- Siam Classics edition
- Seitenzahl: 184
- Erscheinungstermin: 23. Juli 2009
- Englisch
- Abmessung: 247mm x 170mm x 22mm
- Gewicht: 590g
- ISBN-13: 9780898716818
- ISBN-10: 0898716810
- Artikelnr.: 54374260
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
I. Gohberg is Professor Emeritus of Tel-Aviv University and Free University of Amsterdam and Doctor Honoris Causa of several European universities. He has contributed to the fields of functional analysis and operator theory, integral equations and systems theory, matrix analysis and linear algebra, and computational techniques for structured integral equations and structured matrices. He has coauthored 25 books in different areas of pure and applied mathematics.
1. Preface to the Classics Edition
2. Preface
3. Errata
4. Introduction
5. Part I: Monic Matrix Polynomials: Chapter 1: Linearization and Standard
Pairs
6. Chapter 2: Representation of Monic Matrix Polynomials
7. Chapter 3: Multiplication and Divisability
8. Chapter 4: Spectral Divisors and Canonical Factorization
9. Chapter 5: Perturbation and Stability of Divisors
10. Chapter 6: Extension Problems
11. Part II: Nonmonic Matrix Polynomials: Chapter 7: Spectral Properties and
Representations
12. Chapter 8: Applications to Differential and Difference Equations
13. Chapter 9: Least Common Multiples and Greatest Common Divisors of Matrix
Polynomials
14. Part III: Self-Adjoint Matrix Polynomials: Chapter 10: General Theory
15. Chapter 11: Factorization of Self-Adjoint Matrix Polynomials
16. Chapter 12: Further Analysis of the Sign Characteristic
17. Chapter 13: Quadratic Self-Adjoint Polynomials
18. Part IV: Supplementary Chapters in Linear Algebra: Chapter S1: The Smith
Form and Related Problems
19. Chapter S2: The Matrix Equation AX – XB = C
20. Chapter S3: One-Sided and Generalized Inverses
21. Chapter S4: Stable Invariant Subspaces
22. Chapter S5: Indefinite Scalar Product Spaces
23. Chapter S6: Analytic Matrix Functions
24. References
25. List of Notation and Conventions
26. Index
2. Preface
3. Errata
4. Introduction
5. Part I: Monic Matrix Polynomials: Chapter 1: Linearization and Standard
Pairs
6. Chapter 2: Representation of Monic Matrix Polynomials
7. Chapter 3: Multiplication and Divisability
8. Chapter 4: Spectral Divisors and Canonical Factorization
9. Chapter 5: Perturbation and Stability of Divisors
10. Chapter 6: Extension Problems
11. Part II: Nonmonic Matrix Polynomials: Chapter 7: Spectral Properties and
Representations
12. Chapter 8: Applications to Differential and Difference Equations
13. Chapter 9: Least Common Multiples and Greatest Common Divisors of Matrix
Polynomials
14. Part III: Self-Adjoint Matrix Polynomials: Chapter 10: General Theory
15. Chapter 11: Factorization of Self-Adjoint Matrix Polynomials
16. Chapter 12: Further Analysis of the Sign Characteristic
17. Chapter 13: Quadratic Self-Adjoint Polynomials
18. Part IV: Supplementary Chapters in Linear Algebra: Chapter S1: The Smith
Form and Related Problems
19. Chapter S2: The Matrix Equation AX – XB = C
20. Chapter S3: One-Sided and Generalized Inverses
21. Chapter S4: Stable Invariant Subspaces
22. Chapter S5: Indefinite Scalar Product Spaces
23. Chapter S6: Analytic Matrix Functions
24. References
25. List of Notation and Conventions
26. Index
1. Preface to the Classics Edition
2. Preface
3. Errata
4. Introduction
5. Part I: Monic Matrix Polynomials: Chapter 1: Linearization and Standard
Pairs
6. Chapter 2: Representation of Monic Matrix Polynomials
7. Chapter 3: Multiplication and Divisability
8. Chapter 4: Spectral Divisors and Canonical Factorization
9. Chapter 5: Perturbation and Stability of Divisors
10. Chapter 6: Extension Problems
11. Part II: Nonmonic Matrix Polynomials: Chapter 7: Spectral Properties and
Representations
12. Chapter 8: Applications to Differential and Difference Equations
13. Chapter 9: Least Common Multiples and Greatest Common Divisors of Matrix
Polynomials
14. Part III: Self-Adjoint Matrix Polynomials: Chapter 10: General Theory
15. Chapter 11: Factorization of Self-Adjoint Matrix Polynomials
16. Chapter 12: Further Analysis of the Sign Characteristic
17. Chapter 13: Quadratic Self-Adjoint Polynomials
18. Part IV: Supplementary Chapters in Linear Algebra: Chapter S1: The Smith
Form and Related Problems
19. Chapter S2: The Matrix Equation AX – XB = C
20. Chapter S3: One-Sided and Generalized Inverses
21. Chapter S4: Stable Invariant Subspaces
22. Chapter S5: Indefinite Scalar Product Spaces
23. Chapter S6: Analytic Matrix Functions
24. References
25. List of Notation and Conventions
26. Index
2. Preface
3. Errata
4. Introduction
5. Part I: Monic Matrix Polynomials: Chapter 1: Linearization and Standard
Pairs
6. Chapter 2: Representation of Monic Matrix Polynomials
7. Chapter 3: Multiplication and Divisability
8. Chapter 4: Spectral Divisors and Canonical Factorization
9. Chapter 5: Perturbation and Stability of Divisors
10. Chapter 6: Extension Problems
11. Part II: Nonmonic Matrix Polynomials: Chapter 7: Spectral Properties and
Representations
12. Chapter 8: Applications to Differential and Difference Equations
13. Chapter 9: Least Common Multiples and Greatest Common Divisors of Matrix
Polynomials
14. Part III: Self-Adjoint Matrix Polynomials: Chapter 10: General Theory
15. Chapter 11: Factorization of Self-Adjoint Matrix Polynomials
16. Chapter 12: Further Analysis of the Sign Characteristic
17. Chapter 13: Quadratic Self-Adjoint Polynomials
18. Part IV: Supplementary Chapters in Linear Algebra: Chapter S1: The Smith
Form and Related Problems
19. Chapter S2: The Matrix Equation AX – XB = C
20. Chapter S3: One-Sided and Generalized Inverses
21. Chapter S4: Stable Invariant Subspaces
22. Chapter S5: Indefinite Scalar Product Spaces
23. Chapter S6: Analytic Matrix Functions
24. References
25. List of Notation and Conventions
26. Index







