Measures of Complexity
Festschrift for Alexey Chervonenkis
Herausgegeben:Vovk, Vladimir; Papadopoulos, Harris; Gammerman, Alexander
Measures of Complexity
Festschrift for Alexey Chervonenkis
Herausgegeben:Vovk, Vladimir; Papadopoulos, Harris; Gammerman, Alexander
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book brings together historical notes, reviews of research developments, fresh ideas on how to make VC (Vapnik-Chervonenkis) guarantees tighter, and new technical contributions in the areas of machine learning, statistical inference, classification, algorithmic statistics, and pattern recognition.
The contributors are leading scientists in domains such as statistics, mathematics, and theoretical computer science, and the book will be of interest to researchers and graduate students in these domains.
Andere Kunden interessierten sich auch für
- RODRIGO F MELLOMachine Learning75,99 €
- Tayyaba AzimComposing Fisher Kernels from Deep Neural Models38,99 €
- Anshu OhlanGeneralizations of Fuzzy Information Measures75,99 €
- Advanced Analysis and Learning on Temporal Data38,99 €
- Artificial Intelligence and Image Analysis44,99 €
- Algorithmic Advances in Riemannian Geometry and Applications104,99 €
- Malte HelmertUnderstanding Planning Tasks39,99 €
-
-
-
This book brings together historical notes, reviews of research developments, fresh ideas on how to make VC (Vapnik-Chervonenkis) guarantees tighter, and new technical contributions in the areas of machine learning, statistical inference, classification, algorithmic statistics, and pattern recognition.
The contributors are leading scientists in domains such as statistics, mathematics, and theoretical computer science, and the book will be of interest to researchers and graduate students in these domains.
The contributors are leading scientists in domains such as statistics, mathematics, and theoretical computer science, and the book will be of interest to researchers and graduate students in these domains.
Produktdetails
- Produktdetails
- Verlag: Springer / Springer International Publishing / Springer, Berlin
- Artikelnr. des Verlages: 978-3-319-35778-2
- Softcover reprint of the original 1st ed. 2015
- Seitenzahl: 432
- Erscheinungstermin: 22. Oktober 2016
- Englisch
- Abmessung: 235mm x 155mm x 24mm
- Gewicht: 658g
- ISBN-13: 9783319357782
- ISBN-10: 3319357786
- Artikelnr.: 48942977
- Herstellerkennzeichnung
- Springer Nature c/o IBS
- Benzstrasse 21
- 48619 Heek
- Tanja.Keller@springer.com
- Verlag: Springer / Springer International Publishing / Springer, Berlin
- Artikelnr. des Verlages: 978-3-319-35778-2
- Softcover reprint of the original 1st ed. 2015
- Seitenzahl: 432
- Erscheinungstermin: 22. Oktober 2016
- Englisch
- Abmessung: 235mm x 155mm x 24mm
- Gewicht: 658g
- ISBN-13: 9783319357782
- ISBN-10: 3319357786
- Artikelnr.: 48942977
- Herstellerkennzeichnung
- Springer Nature c/o IBS
- Benzstrasse 21
- 48619 Heek
- Tanja.Keller@springer.com
Chervonenkis's Recollections.- A Paper That Created Three New Fields.- On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities.- Sketched History: VC Combinatorics, 1826 up to 1975.- Institute of Control Sciences through the Lens of VC Dimension.- VC Dimension, Fat-Shattering Dimension, Rademacher Averages, and Their Applications.- Around Kolmogorov Complexity: Basic Notions and Results.- Predictive Complexity for Games with Finite Outcome Spaces.- Making Vapnik-Chervonenkis Bounds Accurate.- Comment: Transductive PAC-Bayes Bounds Seen as a Generalization of Vapnik-Chervonenkis Bounds.- Comment: The Two Styles of VC Bounds.- Rejoinder: Making VC Bounds Accurate.- Measures of Complexity in the Theory of Machine Learning.- Classes of Functions Related to VC Properties.- On Martingale Extensions of Vapnik-Chervonenkis.- Theory with Applications to Online Learning.- Measuring the Capacity of Sets of Functions in the Analysis of ERM.- Algorithmic Statistics Revisited.- Justifying Information-Geometric Causal Inference.- Interpretation of Black-Box Predictive Models.- PAC-Bayes Bounds for Supervised Classification.- Bounding Embeddings of VC Classes into Maximum Classes.- Algorithmic Statistics Revisited.- Justifying Information-Geometric Causal Inference.- Interpretation of Black-Box Predictive Models.- PAC-Bayes Bounds for Supervised Classification.- Bounding Embeddings of VC Classes into Maximum Classes.- Strongly Consistent Detection for Nonparametric Hypotheses.- On the Version Space Compression Set Size and Its Applications.- Lower Bounds for Sparse Coding.- Robust Algorithms via PAC-Bayes and Laplace Distributions.- Postscript: Tragic Death of Alexey Chervonenkis.- Credits.- Index.
Chervonenkis's Recollections.- A Paper That Created Three New Fields.- On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities.- Sketched History: VC Combinatorics, 1826 up to 1975.- Institute of Control Sciences through the Lens of VC Dimension.- VC Dimension, Fat-Shattering Dimension, Rademacher Averages, and Their Applications.- Around Kolmogorov Complexity: Basic Notions and Results.- Predictive Complexity for Games with Finite Outcome Spaces.- Making Vapnik-Chervonenkis Bounds Accurate.- Comment: Transductive PAC-Bayes Bounds Seen as a Generalization of Vapnik-Chervonenkis Bounds.- Comment: The Two Styles of VC Bounds.- Rejoinder: Making VC Bounds Accurate.- Measures of Complexity in the Theory of Machine Learning.- Classes of Functions Related to VC Properties.- On Martingale Extensions of Vapnik-Chervonenkis.- Theory with Applications to Online Learning.- Measuring the Capacity of Sets of Functions in the Analysis of ERM.- Algorithmic Statistics Revisited.- Justifying Information-Geometric Causal Inference.- Interpretation of Black-Box Predictive Models.- PAC-Bayes Bounds for Supervised Classification.- Bounding Embeddings of VC Classes into Maximum Classes.- Algorithmic Statistics Revisited.- Justifying Information-Geometric Causal Inference.- Interpretation of Black-Box Predictive Models.- PAC-Bayes Bounds for Supervised Classification.- Bounding Embeddings of VC Classes into Maximum Classes.- Strongly Consistent Detection for Nonparametric Hypotheses.- On the Version Space Compression Set Size and Its Applications.- Lower Bounds for Sparse Coding.- Robust Algorithms via PAC-Bayes and Laplace Distributions.- Postscript: Tragic Death of Alexey Chervonenkis.- Credits.- Index.