95,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
48 °P sammeln
  • Gebundenes Buch

Fully revised and updated, the new edition of this classic textbook places a stronger emphasis on real-world test data and trains students in practical materials applications; introduces new testing techniques such as micropillar compression and electron back scatted diffraction; and presents new coverage of biomaterials, electronic materials, and cellular materials alongside established coverage of metals, polymers, ceramics and composites. Retaining its distinctive emphasis on a balanced mechanics-materials approach, it presents fundamental mechanisms operating at micro- and nanometer scales…mehr

Produktbeschreibung
Fully revised and updated, the new edition of this classic textbook places a stronger emphasis on real-world test data and trains students in practical materials applications; introduces new testing techniques such as micropillar compression and electron back scatted diffraction; and presents new coverage of biomaterials, electronic materials, and cellular materials alongside established coverage of metals, polymers, ceramics and composites. Retaining its distinctive emphasis on a balanced mechanics-materials approach, it presents fundamental mechanisms operating at micro- and nanometer scales across a wide range of materials, in a way that is mathematically simple and requires no extensive knowledge of materials, and demonstrates how these microstructures determine the mechanical properties of materials. Accompanied by online resources for instructors, and including over 40 new figures, over 100 worked examples, and over 740 exercises, including over 280 new exercises, this remains the ideal introduction for senior undergraduate and graduate students in materials science and engineering.
Autorenporträt
Marc A. Meyers is a Distinguished Professor of Nanoengineering at the University of California, San Diego, known for his expertise on the dynamic behavior of materials. He is a recipient of the TMS Educator Award (2013), the ASM International Albert Easton White Distinguished Teacher Award (2015), and the APS George Duvall Shock Compression Science Award (2017). He is a co-author of Biological Materials Science (2014), and is a Fellow of TMS, ASM International, and the APS.