George D. Vendelin, Anthony M. Pavio, Ulrich L. Rohde
Microwave Circuit Design Using Linear and Nonlinear Techniques
George D. Vendelin, Anthony M. Pavio, Ulrich L. Rohde
Microwave Circuit Design Using Linear and Nonlinear Techniques
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Der erfolgreiche Leitfaden der Mikrowellenschaltkreise - jetzt als überarbeitete und aktualisierte Neuauflage! Abgedeckt werden alle Aspekte der Transistoren: intrinsische und Schaltkreiseigenschaften, mathematische und praktische Entwurfsansätze für Schaltkreise, kommerzielle Einsatzbeispiele in der Kommunikations- und Radartechnik und vieles mehr. Enthalten sind Softwaretools für den Entwurf von Mikrowellenschaltkreisen.
Der erfolgreiche Leitfaden der Mikrowellenschaltkreise - jetzt als überarbeitete und aktualisierte Neuauflage! Abgedeckt werden alle Aspekte der Transistoren: intrinsische und Schaltkreiseigenschaften, mathematische und praktische Entwurfsansätze für Schaltkreise, kommerzielle Einsatzbeispiele in der Kommunikations- und Radartechnik und vieles mehr. Enthalten sind Softwaretools für den Entwurf von Mikrowellenschaltkreisen.
Produktdetails
- Produktdetails
- Verlag: Wiley & Sons; Wiley-Interscience
- 2. Aufl. 2005.
- Englisch
- Gewicht: 2020g
- ISBN-13: 9780471414797
- ISBN-10: 0471414794
- Artikelnr.: 10260736
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Verlag: Wiley & Sons; Wiley-Interscience
- 2. Aufl. 2005.
- Englisch
- Gewicht: 2020g
- ISBN-13: 9780471414797
- ISBN-10: 0471414794
- Artikelnr.: 10260736
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
GEORGE D. VENDELIN, ENGEE, is a technical consultant with more than forty years of microwave engineering design and teaching experience. His clients include Texas Instruments, Anritsu, Ford Aerospace/Loral Space Communications/Lockheed Martin, Litton/Filtronics, and many others through his consulting firm, Vendelin Engineering. He is the author of Design of Amplifiers and Oscillators by the S-Parameter Method (Wiley). He is an adjunct professor at Stanford University, Santa Clara University, San Jose State University, and the University of California, Berkeley-Extension.
ANTHONY M. PAVIO, PHD, is the Manager of the Phoenix Design Center for Rockwell Collins, which is focused on the development of advanced high-density military products. He was previously the manager of Integrated RF Ceramics Center for Motorola Labs, specializing in the development of highly integrated LTCC modules. Dr. Pavio was also a technical director of the microwave products division of Texas Instruments.
ULRICH L. ROHDE, PHD, Dr.-ING, is Chairman of Synergy Microwave Corporation; a partner of Rohde Schwarz, a firm specializing in test equipment and advanced communications systems; and Professor of Microwave and RF Technology at the Technische Universitt Cottbus, Germany.
ANTHONY M. PAVIO, PHD, is the Manager of the Phoenix Design Center for Rockwell Collins, which is focused on the development of advanced high-density military products. He was previously the manager of Integrated RF Ceramics Center for Motorola Labs, specializing in the development of highly integrated LTCC modules. Dr. Pavio was also a technical director of the microwave products division of Texas Instruments.
ULRICH L. ROHDE, PHD, Dr.-ING, is Chairman of Synergy Microwave Corporation; a partner of Rohde Schwarz, a firm specializing in test equipment and advanced communications systems; and Professor of Microwave and RF Technology at the Technische Universitt Cottbus, Germany.
Foreword by David Leeson
Preface
1. RF/Microwave Systems
2. Lumped and Distributed Elements
3. Active Devices
4. Two-Port Networks
5. Impedance Matching
6. Microwave Filters
7. Noise in Linear Two-Ports
8. Small and Large-Signal Amplifier Design
9. Power Amplifier Design
10. Oscillator Design
11. Microwave Mixer Design
12. RF Switches and Attenuators
13. Microwave CAD
Appendix A: Gummel-Poon Bipolar Transistor Model
Appendix B: Level 3 MOSFET Model
Appendix C: Noise Parameters of GaAs MESFETs
Appendix D: Derivations for Unilateral Gain Section
Appendix E: Vector Representation of 2 Tone Intermodulation Products
Preface
1. RF/Microwave Systems
2. Lumped and Distributed Elements
3. Active Devices
4. Two-Port Networks
5. Impedance Matching
6. Microwave Filters
7. Noise in Linear Two-Ports
8. Small and Large-Signal Amplifier Design
9. Power Amplifier Design
10. Oscillator Design
11. Microwave Mixer Design
12. RF Switches and Attenuators
13. Microwave CAD
Appendix A: Gummel-Poon Bipolar Transistor Model
Appendix B: Level 3 MOSFET Model
Appendix C: Noise Parameters of GaAs MESFETs
Appendix D: Derivations for Unilateral Gain Section
Appendix E: Vector Representation of 2 Tone Intermodulation Products
Foreword xvii
Preface To The Third Edition xix
1 RF/Microwave Systems 1
1.1 Introduction 1
1.2 Maxwell's Equations 11
1.3 Frequency Bands, Modes, and Waveforms of Operation 13
1.4 Analog and Digital Signals 15
1.5 Elementary Functions 26
1.6 Basic RF Transmitters and Receivers 32
1.7 RF Wireless/Microwave/Millimeter Wave Applications 34
1.8 Modern CAD for Nonlinear Circuit Analysis 37
1.9 Dynamic Load Line 38
References 39
Bibliography 40
Problems 41
2 Lumped and Distributed Elements 43
2.1 Introduction 43
2.2 Transition from RF to Microwave Circuits 43
2.3 Parasitic Effects on Lumped Elements 46
2.4 Distributed Elements 53
2.5 Hybrid Element: Helical Coil 54
References 55
Bibliography 57
Problems 57
3 Active Devices 59
3.1 Introduction 59
3.2 Diodes 60
3.2.1 Large-Signal Diode Model 61
3.2.2 Mixer and Detector Diodes 65
3.2.3 Parameter Trade-Offs 70
3.2.4 Mixer Diodes 72
3.2.5 PIN Diodes 73
3.2.6 Tuning Diodes 84
3.2.7 Q Factor or Diode Loss 94
3.2.8 Diode Problems 99
3.2.9 Diode-Tuned Resonant Circuits 105
3.3 Microwave Transistors 110
3.3.1 Transistor Classification 110
3.3.2 Bipolar Transistor Basics 113
3.3.3 GaAs and InP Heterojunction Bipolar Transistors 127
3.3.4 SiGe HBTs 141
3.3.5 Field-Effect Transistor Basics 147
3.3.6 GaN, GaAs, and InP HEMTs 158
3.3.7 MOSFETs 165
3.3.8 Packaged Transistors 182
3.4 Example: Selecting Transistor and Bias for Low-Noise Amplification 186
3.5 Example: Selecting Transistor and Bias for Oscillator Design 191
3.6 Example: Selecting Transistor and Bias for Power Amplification 194
3.6.1 Biasing HEMTs 196
3.6.2 Biasing HBTs 198
References 200
Bibliography 203
Problems 204
4 Two-Port Networks 205
4.1 Introduction 205
4.2 Two-Port Parameters 206
4.3 S Parameters 216
4.4 S Parameters from SPICE Analysis 216
4.5 Mason Graphs 217
4.6 Stability 221
4.7 Power Gains, Voltage Gain, and Current Gain 223
4.7.1 Power Gain 223
4.7.2 Voltage Gain and Current Gain 229
4.7.3 Current Gain 230
4.8 Three-Ports 231
4.9 Derivation of Transducer Power Gain 234
4.10 Differential S Parameters 236
4.10.1 Measurements 239
4.10.2 Example 239
4.11 Twisted-Wire Pair Lines 240
4.12 Low-Noise and High-Power Amplifier Design 242
4.13 Low-Noise Amplifier Design Examples 245
References 254
Bibliography 255
Problems 255
5 Impedance Matching 261
5.1 Introduction 261
5.2 Smith Charts and Matching 261
5.3 Impedance Matching Networks 269
5.4 Single-Element Matching 269
5.5 Two-Element Matching 271
5.6 Matching Networks Using Lumped Elements 272
5.7 Matching Networks Using Distributed Elements 273
5.7.1 Twisted-Wire Pair Transformers 273
5.7.2 Transmission Line Transformers 274
5.7.3 Tapered Transmission Lines 276
5.8 Bandwidth Constraints for Matching Networks 277
References 287
BIBLIOGRAPHY 288
PROBLEMS 288
6 Microwave Filters 294
6.1 Introduction 294
6.2
Preface To The Third Edition xix
1 RF/Microwave Systems 1
1.1 Introduction 1
1.2 Maxwell's Equations 11
1.3 Frequency Bands, Modes, and Waveforms of Operation 13
1.4 Analog and Digital Signals 15
1.5 Elementary Functions 26
1.6 Basic RF Transmitters and Receivers 32
1.7 RF Wireless/Microwave/Millimeter Wave Applications 34
1.8 Modern CAD for Nonlinear Circuit Analysis 37
1.9 Dynamic Load Line 38
References 39
Bibliography 40
Problems 41
2 Lumped and Distributed Elements 43
2.1 Introduction 43
2.2 Transition from RF to Microwave Circuits 43
2.3 Parasitic Effects on Lumped Elements 46
2.4 Distributed Elements 53
2.5 Hybrid Element: Helical Coil 54
References 55
Bibliography 57
Problems 57
3 Active Devices 59
3.1 Introduction 59
3.2 Diodes 60
3.2.1 Large-Signal Diode Model 61
3.2.2 Mixer and Detector Diodes 65
3.2.3 Parameter Trade-Offs 70
3.2.4 Mixer Diodes 72
3.2.5 PIN Diodes 73
3.2.6 Tuning Diodes 84
3.2.7 Q Factor or Diode Loss 94
3.2.8 Diode Problems 99
3.2.9 Diode-Tuned Resonant Circuits 105
3.3 Microwave Transistors 110
3.3.1 Transistor Classification 110
3.3.2 Bipolar Transistor Basics 113
3.3.3 GaAs and InP Heterojunction Bipolar Transistors 127
3.3.4 SiGe HBTs 141
3.3.5 Field-Effect Transistor Basics 147
3.3.6 GaN, GaAs, and InP HEMTs 158
3.3.7 MOSFETs 165
3.3.8 Packaged Transistors 182
3.4 Example: Selecting Transistor and Bias for Low-Noise Amplification 186
3.5 Example: Selecting Transistor and Bias for Oscillator Design 191
3.6 Example: Selecting Transistor and Bias for Power Amplification 194
3.6.1 Biasing HEMTs 196
3.6.2 Biasing HBTs 198
References 200
Bibliography 203
Problems 204
4 Two-Port Networks 205
4.1 Introduction 205
4.2 Two-Port Parameters 206
4.3 S Parameters 216
4.4 S Parameters from SPICE Analysis 216
4.5 Mason Graphs 217
4.6 Stability 221
4.7 Power Gains, Voltage Gain, and Current Gain 223
4.7.1 Power Gain 223
4.7.2 Voltage Gain and Current Gain 229
4.7.3 Current Gain 230
4.8 Three-Ports 231
4.9 Derivation of Transducer Power Gain 234
4.10 Differential S Parameters 236
4.10.1 Measurements 239
4.10.2 Example 239
4.11 Twisted-Wire Pair Lines 240
4.12 Low-Noise and High-Power Amplifier Design 242
4.13 Low-Noise Amplifier Design Examples 245
References 254
Bibliography 255
Problems 255
5 Impedance Matching 261
5.1 Introduction 261
5.2 Smith Charts and Matching 261
5.3 Impedance Matching Networks 269
5.4 Single-Element Matching 269
5.5 Two-Element Matching 271
5.6 Matching Networks Using Lumped Elements 272
5.7 Matching Networks Using Distributed Elements 273
5.7.1 Twisted-Wire Pair Transformers 273
5.7.2 Transmission Line Transformers 274
5.7.3 Tapered Transmission Lines 276
5.8 Bandwidth Constraints for Matching Networks 277
References 287
BIBLIOGRAPHY 288
PROBLEMS 288
6 Microwave Filters 294
6.1 Introduction 294
6.2
Foreword by David Leeson
Preface
1. RF/Microwave Systems
2. Lumped and Distributed Elements
3. Active Devices
4. Two-Port Networks
5. Impedance Matching
6. Microwave Filters
7. Noise in Linear Two-Ports
8. Small and Large-Signal Amplifier Design
9. Power Amplifier Design
10. Oscillator Design
11. Microwave Mixer Design
12. RF Switches and Attenuators
13. Microwave CAD
Appendix A: Gummel-Poon Bipolar Transistor Model
Appendix B: Level 3 MOSFET Model
Appendix C: Noise Parameters of GaAs MESFETs
Appendix D: Derivations for Unilateral Gain Section
Appendix E: Vector Representation of 2 Tone Intermodulation Products
Preface
1. RF/Microwave Systems
2. Lumped and Distributed Elements
3. Active Devices
4. Two-Port Networks
5. Impedance Matching
6. Microwave Filters
7. Noise in Linear Two-Ports
8. Small and Large-Signal Amplifier Design
9. Power Amplifier Design
10. Oscillator Design
11. Microwave Mixer Design
12. RF Switches and Attenuators
13. Microwave CAD
Appendix A: Gummel-Poon Bipolar Transistor Model
Appendix B: Level 3 MOSFET Model
Appendix C: Noise Parameters of GaAs MESFETs
Appendix D: Derivations for Unilateral Gain Section
Appendix E: Vector Representation of 2 Tone Intermodulation Products
Foreword xvii
Preface To The Third Edition xix
1 RF/Microwave Systems 1
1.1 Introduction 1
1.2 Maxwell's Equations 11
1.3 Frequency Bands, Modes, and Waveforms of Operation 13
1.4 Analog and Digital Signals 15
1.5 Elementary Functions 26
1.6 Basic RF Transmitters and Receivers 32
1.7 RF Wireless/Microwave/Millimeter Wave Applications 34
1.8 Modern CAD for Nonlinear Circuit Analysis 37
1.9 Dynamic Load Line 38
References 39
Bibliography 40
Problems 41
2 Lumped and Distributed Elements 43
2.1 Introduction 43
2.2 Transition from RF to Microwave Circuits 43
2.3 Parasitic Effects on Lumped Elements 46
2.4 Distributed Elements 53
2.5 Hybrid Element: Helical Coil 54
References 55
Bibliography 57
Problems 57
3 Active Devices 59
3.1 Introduction 59
3.2 Diodes 60
3.2.1 Large-Signal Diode Model 61
3.2.2 Mixer and Detector Diodes 65
3.2.3 Parameter Trade-Offs 70
3.2.4 Mixer Diodes 72
3.2.5 PIN Diodes 73
3.2.6 Tuning Diodes 84
3.2.7 Q Factor or Diode Loss 94
3.2.8 Diode Problems 99
3.2.9 Diode-Tuned Resonant Circuits 105
3.3 Microwave Transistors 110
3.3.1 Transistor Classification 110
3.3.2 Bipolar Transistor Basics 113
3.3.3 GaAs and InP Heterojunction Bipolar Transistors 127
3.3.4 SiGe HBTs 141
3.3.5 Field-Effect Transistor Basics 147
3.3.6 GaN, GaAs, and InP HEMTs 158
3.3.7 MOSFETs 165
3.3.8 Packaged Transistors 182
3.4 Example: Selecting Transistor and Bias for Low-Noise Amplification 186
3.5 Example: Selecting Transistor and Bias for Oscillator Design 191
3.6 Example: Selecting Transistor and Bias for Power Amplification 194
3.6.1 Biasing HEMTs 196
3.6.2 Biasing HBTs 198
References 200
Bibliography 203
Problems 204
4 Two-Port Networks 205
4.1 Introduction 205
4.2 Two-Port Parameters 206
4.3 S Parameters 216
4.4 S Parameters from SPICE Analysis 216
4.5 Mason Graphs 217
4.6 Stability 221
4.7 Power Gains, Voltage Gain, and Current Gain 223
4.7.1 Power Gain 223
4.7.2 Voltage Gain and Current Gain 229
4.7.3 Current Gain 230
4.8 Three-Ports 231
4.9 Derivation of Transducer Power Gain 234
4.10 Differential S Parameters 236
4.10.1 Measurements 239
4.10.2 Example 239
4.11 Twisted-Wire Pair Lines 240
4.12 Low-Noise and High-Power Amplifier Design 242
4.13 Low-Noise Amplifier Design Examples 245
References 254
Bibliography 255
Problems 255
5 Impedance Matching 261
5.1 Introduction 261
5.2 Smith Charts and Matching 261
5.3 Impedance Matching Networks 269
5.4 Single-Element Matching 269
5.5 Two-Element Matching 271
5.6 Matching Networks Using Lumped Elements 272
5.7 Matching Networks Using Distributed Elements 273
5.7.1 Twisted-Wire Pair Transformers 273
5.7.2 Transmission Line Transformers 274
5.7.3 Tapered Transmission Lines 276
5.8 Bandwidth Constraints for Matching Networks 277
References 287
BIBLIOGRAPHY 288
PROBLEMS 288
6 Microwave Filters 294
6.1 Introduction 294
6.2
Preface To The Third Edition xix
1 RF/Microwave Systems 1
1.1 Introduction 1
1.2 Maxwell's Equations 11
1.3 Frequency Bands, Modes, and Waveforms of Operation 13
1.4 Analog and Digital Signals 15
1.5 Elementary Functions 26
1.6 Basic RF Transmitters and Receivers 32
1.7 RF Wireless/Microwave/Millimeter Wave Applications 34
1.8 Modern CAD for Nonlinear Circuit Analysis 37
1.9 Dynamic Load Line 38
References 39
Bibliography 40
Problems 41
2 Lumped and Distributed Elements 43
2.1 Introduction 43
2.2 Transition from RF to Microwave Circuits 43
2.3 Parasitic Effects on Lumped Elements 46
2.4 Distributed Elements 53
2.5 Hybrid Element: Helical Coil 54
References 55
Bibliography 57
Problems 57
3 Active Devices 59
3.1 Introduction 59
3.2 Diodes 60
3.2.1 Large-Signal Diode Model 61
3.2.2 Mixer and Detector Diodes 65
3.2.3 Parameter Trade-Offs 70
3.2.4 Mixer Diodes 72
3.2.5 PIN Diodes 73
3.2.6 Tuning Diodes 84
3.2.7 Q Factor or Diode Loss 94
3.2.8 Diode Problems 99
3.2.9 Diode-Tuned Resonant Circuits 105
3.3 Microwave Transistors 110
3.3.1 Transistor Classification 110
3.3.2 Bipolar Transistor Basics 113
3.3.3 GaAs and InP Heterojunction Bipolar Transistors 127
3.3.4 SiGe HBTs 141
3.3.5 Field-Effect Transistor Basics 147
3.3.6 GaN, GaAs, and InP HEMTs 158
3.3.7 MOSFETs 165
3.3.8 Packaged Transistors 182
3.4 Example: Selecting Transistor and Bias for Low-Noise Amplification 186
3.5 Example: Selecting Transistor and Bias for Oscillator Design 191
3.6 Example: Selecting Transistor and Bias for Power Amplification 194
3.6.1 Biasing HEMTs 196
3.6.2 Biasing HBTs 198
References 200
Bibliography 203
Problems 204
4 Two-Port Networks 205
4.1 Introduction 205
4.2 Two-Port Parameters 206
4.3 S Parameters 216
4.4 S Parameters from SPICE Analysis 216
4.5 Mason Graphs 217
4.6 Stability 221
4.7 Power Gains, Voltage Gain, and Current Gain 223
4.7.1 Power Gain 223
4.7.2 Voltage Gain and Current Gain 229
4.7.3 Current Gain 230
4.8 Three-Ports 231
4.9 Derivation of Transducer Power Gain 234
4.10 Differential S Parameters 236
4.10.1 Measurements 239
4.10.2 Example 239
4.11 Twisted-Wire Pair Lines 240
4.12 Low-Noise and High-Power Amplifier Design 242
4.13 Low-Noise Amplifier Design Examples 245
References 254
Bibliography 255
Problems 255
5 Impedance Matching 261
5.1 Introduction 261
5.2 Smith Charts and Matching 261
5.3 Impedance Matching Networks 269
5.4 Single-Element Matching 269
5.5 Two-Element Matching 271
5.6 Matching Networks Using Lumped Elements 272
5.7 Matching Networks Using Distributed Elements 273
5.7.1 Twisted-Wire Pair Transformers 273
5.7.2 Transmission Line Transformers 274
5.7.3 Tapered Transmission Lines 276
5.8 Bandwidth Constraints for Matching Networks 277
References 287
BIBLIOGRAPHY 288
PROBLEMS 288
6 Microwave Filters 294
6.1 Introduction 294
6.2