Modeling, Analysis and Simulations of Multiscale Transport Phenomena
ICMASMTP 2022, Kharagpur, India, August 25-27
Herausgegeben:Bhattacharyya, Somnath; Mahato, Hari Shankar
Modeling, Analysis and Simulations of Multiscale Transport Phenomena
ICMASMTP 2022, Kharagpur, India, August 25-27
Herausgegeben:Bhattacharyya, Somnath; Mahato, Hari Shankar
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This volume contains selected chapters on topics presented at the International Conference on Modeling, Analysis and Simulations of Multiscale Transport Phenomena (ICMASMTP 2022), held at the Department of Mathematics, Indian Institute of Technology Kharagpur, West Bengal, India, from 22-25 August 2022. It contains chapters on applications of FLOW THROUGH POROUS MEDIA, diffusion-reaction equations, fluid dynamics, multi-scale analysis, electrokinetic transport processes, microfluidics modelling, numerical analysis, and related topics. Contributors are academicians, experts and researchers in…mehr
Andere Kunden interessierten sich auch für
- Xavier BlancHomogenization Theory for Multiscale Problems64,99 €
- Xavier BlancHomogenization Theory for Multiscale Problems45,99 €
- Advances in Transport Phenomena153,99 €
- Mathematical Modeling, Applied Analysis and Computational Methods168,99 €
- Transport Phenomena in Multiphase Systems75,99 €
- Mathematical Modeling, Simulation, Visualization and e-Learning38,99 €
- Kuppalapalle VajraveluNonlinear Flow Phenomena and Homotopy Analysis38,99 €
-
-
-
This volume contains selected chapters on topics presented at the International Conference on Modeling, Analysis and Simulations of Multiscale Transport Phenomena (ICMASMTP 2022), held at the Department of Mathematics, Indian Institute of Technology Kharagpur, West Bengal, India, from 22-25 August 2022. It contains chapters on applications of FLOW THROUGH POROUS MEDIA, diffusion-reaction equations, fluid dynamics, multi-scale analysis, electrokinetic transport processes, microfluidics modelling, numerical analysis, and related topics. Contributors are academicians, experts and researchers in various disciplines of applied mathematics, numerical analysis and scientific computation, having applications in physics, engineering, chemistry, biology and medical science.
Produktdetails
- Produktdetails
- Springer Proceedings in Mathematics & Statistics 491
- Verlag: Springer / Springer Nature Singapore / Springer, Berlin
- Artikelnr. des Verlages: 978-981-96-3097-4
- Seitenzahl: 284
- Erscheinungstermin: 21. Juni 2025
- Englisch
- Abmessung: 241mm x 160mm x 20mm
- Gewicht: 644g
- ISBN-13: 9789819630974
- ISBN-10: 9819630975
- Artikelnr.: 72674425
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Springer Proceedings in Mathematics & Statistics 491
- Verlag: Springer / Springer Nature Singapore / Springer, Berlin
- Artikelnr. des Verlages: 978-981-96-3097-4
- Seitenzahl: 284
- Erscheinungstermin: 21. Juni 2025
- Englisch
- Abmessung: 241mm x 160mm x 20mm
- Gewicht: 644g
- ISBN-13: 9789819630974
- ISBN-10: 9819630975
- Artikelnr.: 72674425
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Somnath Bhattacharyya is Institute Chair Professor in the Department of Mathematics at the Indian Institute of Technology Kharagpur. Prof. Bhattacharyya did his PhD from the Indian Institute of Science, Bangalore. His research interests are Computational Fluid Dynamics, microfluidics and microscale transport, Partial Differential Equations and Scientific Computing. Prof. Bhattacharyya has received several prestigious fellowships for research collaboration abroad and was elected FNASC. He has published more than 200 papers, completed several sponsored research projects and offered online NPTEL courses. Prof. Bhattacharyya is recognized for his work in Applied Mathematics particularly his contributions to devising numerical methods for solving electrokinetic transport in microscale. His research focuses on mathematical modelling and numerical analysis incorporating inherently non-linear effects to analyse underlying physical mechanisms of several complicated transport phenomena. These studies establish the bridge between the theoretical understanding and experimentally observed phenomena. A significant part of his work focuses on the development of advanced numerical algorithms to compute nonlinear PDEs. Hari Shankar Mahato is an Assistant Professor in the Department of Mathematics at the Indian Institute of Technology Kharagpur. Dr. Mahato did his PhD from the University of Bremen in 2013 on the homogenisation of a system of nonlinear diffusion-reaction equations in a porous medium. His research interests are Partial Differential Equations, Applied Analysis and Homogenisation Theory. He was a postdoctoral researcher at the University of Erlangen-Nürnberg, TU Dortmund and at the University of Georgia. He has a decade-long experience in the fields of applied analysis and is an active researcher in this community.
A. Jüngel and M. Biswas, Global Martingale Solutions to a Segregation Cross-diffusion System with Stochastic Forcing.- A. Sandhya, M. Siva Mala, R. Sandhya and G.Venkata Ramana Reddy, MHD Casson Fluid Flow over a Vertical Porous Surface with the Effects of Radiation and Chemical Reaction.- S. Singh, B. Sagar and S. Saha Ray, Paul-Painlevé Approach to Solve (3 + 1)-dimensional Extended Sakovich Equation Arising in Fluid Dynamics.- H. Ohshima, Unsteady Electrophoresis of a Spherical Colloidal Particle: Time-dependent Transient Henry Function.- H. Kumar Shaw, Mallika Aich and Subhamoy Singha Roy, Reverse Transcription Polymerase Spin Chain Reaction.- A. K. Nayak and M. Majhi, Numerical Study of Ion Transport and Convective Min Micro Channel with Nozzle/Diffuser.- M. Chaudhary and H. Shankar Mahato, Analytical Solution of Multi-species Pollutant Transport Problem Coupled with Linear Reactions and Additional Source/Sink Term.- N. Kumar, S. Kumar, V. Kumar, S. Datta and S. S. Roy, A Theoretical Model Slant to the Fermi Energy for Low-dimensional Materials.- P. Mondal and D. K. Maiti, A Mixed Convection Two-dimensional Flow and Heat Transfer of Power Law Fluid Past through Porous Microchannel.- P. Koner and S. Bera, Electroosmotic Flow of Generalized Maxwell Fluids in Polyelectrolyte Grafted Nanopore Modulated by Ion Partitioning Effects under AC Electric Field.- R. Bhardwaj and Inderjeet, Numerical Simulation of Parabolic Partial Differential Equation.- N. Chauhan, FVM Simulation Study for Dispersion Pattern of Indoor Thoron Gas using Computational Fluid Dynamics (CFD) Modeling: Effect of Room Configuration.- S. Singh and S. Saha Ray, Propagation of Two-wave Solitons Depending on Phase-velocity Parameters of Two Higher-dimensional Dual-mode Models in Nonlinear Physics.- S. S. Banerjee, A. Bhattacharyya, S. K. Sharma and S. C. Panja, Delay Modelling of Selected Trains in Indian Railways.- S. Behera, Analytical Solutions of Fractional Order Newell-Whitehead-Segel Equation.- S. S. Barman and S. Bhattacharyya, Gel Electrophoresis of a Polarizable Charged Colloid with Hydrophobic Surface.- S. Ghosh and S. S. Roy, Photon Echo on DNA Molecules: A Theoretical Study.- S. Hossain, K. Ghoshal and A. Dhar, Numerical Simulation of a Simplified Stratification Model of Suspended Sediment Concentration in an Open-channel Turbulent Flow.- S. Sen, S. Hossain and K. Ghoshal, Effects of Hydrodynamic Phenomena on Two-dimensional Distribution of Suspended Sediment Concentration in an Open Channel Flow.- Y. Nandkuliyar and S. S. Roy, Theoretical Models of DNA Elasticity.
A. Jüngel and M. Biswas, Global Martingale Solutions to a Segregation Cross-diffusion System with Stochastic Forcing.- A. Sandhya, M. Siva Mala, R. Sandhya and G.Venkata Ramana Reddy, MHD Casson Fluid Flow over a Vertical Porous Surface with the Effects of Radiation and Chemical Reaction.- S. Singh, B. Sagar and S. Saha Ray, Paul-Painlevé Approach to Solve (3 + 1)-dimensional Extended Sakovich Equation Arising in Fluid Dynamics.- H. Ohshima, Unsteady Electrophoresis of a Spherical Colloidal Particle: Time-dependent Transient Henry Function.- H. Kumar Shaw, Mallika Aich and Subhamoy Singha Roy, Reverse Transcription Polymerase Spin Chain Reaction.- A. K. Nayak and M. Majhi, Numerical Study of Ion Transport and Convective Min Micro Channel with Nozzle/Diffuser.- M. Chaudhary and H. Shankar Mahato, Analytical Solution of Multi-species Pollutant Transport Problem Coupled with Linear Reactions and Additional Source/Sink Term.- N. Kumar, S. Kumar, V. Kumar, S. Datta and S. S. Roy, A Theoretical Model Slant to the Fermi Energy for Low-dimensional Materials.- P. Mondal and D. K. Maiti, A Mixed Convection Two-dimensional Flow and Heat Transfer of Power Law Fluid Past through Porous Microchannel.- P. Koner and S. Bera, Electroosmotic Flow of Generalized Maxwell Fluids in Polyelectrolyte Grafted Nanopore Modulated by Ion Partitioning Effects under AC Electric Field.- R. Bhardwaj and Inderjeet, Numerical Simulation of Parabolic Partial Differential Equation.- N. Chauhan, FVM Simulation Study for Dispersion Pattern of Indoor Thoron Gas using Computational Fluid Dynamics (CFD) Modeling: Effect of Room Configuration.- S. Singh and S. Saha Ray, Propagation of Two-wave Solitons Depending on Phase-velocity Parameters of Two Higher-dimensional Dual-mode Models in Nonlinear Physics.- S. S. Banerjee, A. Bhattacharyya, S. K. Sharma and S. C. Panja, Delay Modelling of Selected Trains in Indian Railways.- S. Behera, Analytical Solutions of Fractional Order Newell-Whitehead-Segel Equation.- S. S. Barman and S. Bhattacharyya, Gel Electrophoresis of a Polarizable Charged Colloid with Hydrophobic Surface.- S. Ghosh and S. S. Roy, Photon Echo on DNA Molecules: A Theoretical Study.- S. Hossain, K. Ghoshal and A. Dhar, Numerical Simulation of a Simplified Stratification Model of Suspended Sediment Concentration in an Open-channel Turbulent Flow.- S. Sen, S. Hossain and K. Ghoshal, Effects of Hydrodynamic Phenomena on Two-dimensional Distribution of Suspended Sediment Concentration in an Open Channel Flow.- Y. Nandkuliyar and S. S. Roy, Theoretical Models of DNA Elasticity.