104,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
52 °P sammeln
  • Gebundenes Buch

A large number of scientific works are devoted to the study and modeling of accidental oil spills. However, there is no single approach to the description of processes and a generally accepted system of models. An additional fundamental difficulty is the impossibility of conducting full-fledged full-scale experimental studies, which makes it difficult to verify the adequacy and accuracy of oil spill models. Our book is devoted to the problems of experimental investigation and theoretical description of spills, as well as the practical removal of various petroleum products from the water…mehr

Produktbeschreibung
A large number of scientific works are devoted to the study and modeling of accidental oil spills. However, there is no single approach to the description of processes and a generally accepted system of models. An additional fundamental difficulty is the impossibility of conducting full-fledged full-scale experimental studies, which makes it difficult to verify the adequacy and accuracy of oil spill models. Our book is devoted to the problems of experimental investigation and theoretical description of spills, as well as the practical removal of various petroleum products from the water surface and ice. It provides an overview of the most well-known theoretical models of the process of spreading oil stains on the water surface. Also, in the relevant sections, an original spreading model based on an energy approach is proposed and analyzed. The results of new experimental studies of the dynamics of the process for various hydrocarbons on water, including variations in its temperatureand salinity, are presented. In the following chapters, a theoretical description of oil spreading on the upper and lower surfaces of floating ice is proposed, modeling phenomena in the Arctic and subarctic zones of the world ocean. New experimental data on the spreading of petroleum products on the ice surface are presented. The final part provides a brief overview of the existing most used and promising methods for removing of hydrocarbons from the water surface. New original constructive solutions to this problem are proposed, the technical characteristics of which have received theoretical justification and experimental confirmation.
Autorenporträt
Editor: Dr. Chaplina Tatiana, Doctor of Physical and Mathematical Sciences, graduated from the Faculty of Physics at Lomonosov Moscow State University.She research interests are vortices, waves, impurities, mechanics of multiphase media, physical and mathematical modeling. She is the author of more than 250 works and holds three patents, and is the Director of Quaternion Publishing House.