121,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
61 °P sammeln
  • Gebundenes Buch

This monograph discusses the theoretical and practical development of multicriteria decision making (MCDM). The main purpose of MCDM is the construction of systematized strategies for the "optimisation" of feasible options, as well as the justification of why some alternatives can be declared "optimal". However, at time, we must make decisions in an uncertain environment and such inconvenience gives rise to a much more elaborate scenario. This book highlights models where this lack of certainty can be flexibly fitted in and goes on to explore valuable strategies for making decisions under a…mehr

Produktbeschreibung
This monograph discusses the theoretical and practical development of multicriteria decision making (MCDM). The main purpose of MCDM is the construction of systematized strategies for the "optimisation" of feasible options, as well as the justification of why some alternatives can be declared "optimal". However, at time, we must make decisions in an uncertain environment and such inconvenience gives rise to a much more elaborate scenario. This book highlights models where this lack of certainty can be flexibly fitted in and goes on to explore valuable strategies for making decisions under a multiplicity of criteria. Methods discussed include bipolar fuzzy TOPSIS method, bipolar fuzzy ELECTRE-I method, bipolar fuzzy ELECTRE-II method, bipolar fuzzy VIKOR method, bipolar fuzzy PROMETHEE method, and two-tuple linguistic bipolar fuzzy Heronian mean operators. This book is a valuable resource for researchers, computer scientists, and social scientists alike.
Autorenporträt
MUHAMMAD AKRAM is a Professor at the Department of Mathematics, University of the Punjab, Lahore, Pakistan. He previously served at Punjab University College of Information Technology as an Assistant Professor and Associate Professor. He earned his Ph.D. in fuzzy mathematics from Government College University, Lahore, Pakistan. His research interests include numerical algorithms, fuzzy graphs, fuzzy algebras, and fuzzy decision support systems. He has published five books and over 265 research articles in peer-reviewed international journals, and supervised ten Ph.D. students.