119,99 €
inkl. MwSt.
Versandkostenfrei*
Erscheint vorauss. 28. November 2025
payback
60 °P sammeln
  • Gebundenes Buch

This book introduces a groundbreaking multi-field coupled constitutive model framework for unsaturated soils, rooted in the theory of thermodynamics of granular materials. By exploring the intricate energy dissipation processes at the granular level, this book offers a fresh perspective on the behavior of soils, moving beyond traditional models that rely on yield criteria and flow rules. Instead, it delves into the concepts of granular entropy and granular temperature, providing a comprehensive understanding of the dissipative mechanisms that govern soil behavior.
Key topics include the
…mehr

Produktbeschreibung
This book introduces a groundbreaking multi-field coupled constitutive model framework for unsaturated soils, rooted in the theory of thermodynamics of granular materials. By exploring the intricate energy dissipation processes at the granular level, this book offers a fresh perspective on the behavior of soils, moving beyond traditional models that rely on yield criteria and flow rules. Instead, it delves into the concepts of granular entropy and granular temperature, providing a comprehensive understanding of the dissipative mechanisms that govern soil behavior.

Key topics include the establishment of the constitutive model and the application of this innovative model to various soil types, such as saturated clays, gassy soils, and sands. The author meticulously examines the composition of the dissipative structure of thermodynamic systems and the migration coefficients, offering insights into the macroscopic physical and mechanical behaviors of soils. Through leveraging migration coefficients and energy functions to correlate the dissipation mechanisms at the soil granular scale with macroscopic mechanical behaviors, this book establishes a unified theoretical framework for soil constitutive model that enhances our understanding of soil mechanics in complex environments.

This book is a must-read for researchers, scholars, and practitioners in geotechnical engineering and soil mechanics. It provides valuable insights into the energy dissipation mechanisms and mechanical behavior of soils, offering a robust theoretical foundation for future research and practical applications.
Autorenporträt
Dr. Guangchang Yang received his B.E. degree in Geological Engineering from China University of Geosciences (Beijing), Beijing, China, in 2013, and the B.E. and Ph.D. degrees in Civil Engineering from Beijing Jiaotong University, Beijing, in 2016 and 2020, respectively. Since 2022, Dr. Yang has been in the Department of Civil Engineering, University of Science and Technology Beijing as an associate professor. Dr. Yang focuses on the research of mechanical properties of soil in complex environments. His recent research interests include: constitutive theory of unsaturated soil, multi-field coupling of soil, environmental geotechnical engineering, etc. He has received funding from multiple projects, including sub-projects of the National Key Research and Development Program, the National Natural Science Foundation of China, and the Beijing Natural Science Foundation, and he has won two second prizes in natural science at the provincial and ministerial level.