Multiphysics Modelling of Fluid-Particulate Systems provides an explanation of how to model fluid-particulate systems using Eulerian and Lagrangian methods. The computational cost and relative merits of the different methods are compared, with recommendations on where and how to apply them provided. The science underlying the fluid-particulate phenomena involves computational fluid dynamics (for liquids and gases), computational particle dynamics (solids), and mass and heat transfer. In order to simulate these systems, it is essential to model the interactions between phases and the fluids and…mehr
Multiphysics Modelling of Fluid-Particulate Systems provides an explanation of how to model fluid-particulate systems using Eulerian and Lagrangian methods. The computational cost and relative merits of the different methods are compared, with recommendations on where and how to apply them provided. The science underlying the fluid-particulate phenomena involves computational fluid dynamics (for liquids and gases), computational particle dynamics (solids), and mass and heat transfer. In order to simulate these systems, it is essential to model the interactions between phases and the fluids and particles themselves. This book details instructions for several numerical methods of dealing with this complex problem.
This book is essential reading for researchers from all backgrounds interested in multiphase flows or fluid-solid modeling, as well as engineers working on related problems in chemical engineering, food science, process engineering, geophysics or metallurgical processing.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Dr. Hassan Abbas Khawaja is an Associate Professor at UiT The Arctic University of Norway, leading the IR, Spectroscopy, and Numerical Modelling Research Group within the Process and Gas team. He holds a Doctorate in Engineering from the University of Cambridge and an Executive MBA from Quantic School of Business. Khawaja is a Chartered Engineer, Vice President of the International Society of Multiphysics, and Director of the Global Listening Centre. He has received prestigious awards and led research projects funded by entities like the Research Council of Norway. Khawaja's teaching emphasizes practical applications and critical thinking, introducing courses in Multiphysics Simulation. His work is published in peer-reviewed journals, and he is actively involved in peer review and conference organization. Engaged in outreach activities, Khawaja promotes the relevance of multiphysics in engineering and science through various initiatives.
Inhaltsangabe
Part 1 Computational Fluid Dynamics: Discrete Element Modeling of Fluidized Beds 1. Introduction: discrete element modeling-computational fluid dynamics of fluidized beds 2. Methodology: CFD-DEM of Fluidized Beds 3. Validation case study: bubbling in the fluidized bed 4. Validation Case Study: Sound Waves in Fluidized Medium
Part 2 Large, (non)spherical particle modeling in the context of fluid filtration applications (resolved Eulerian-Lagrangian) 5. Introduction: large, (non-)spherical particle modeling in the context of fluid filtration applications 6. Methodology: large (non)spherical particle modeling in the context of fluid filtration applications 7. Validation: experimental and semianalytical 8. Application and results: filter fiber engineering 9. Conclusion and vision
Part 3 Lagrangian-Lagrangian: Modeling Shocks through Inhomogeneous Media with Smoothed Particle Hydrodynamics 10. Introduction: smoothed particle hydrodynamics modeling of shocks 11. Methodology: smoothed particle hydrodynamics modeling of shocks 12. Validation: smoothed particle hydrodynamics modeling of shocks 13. Conclusion: smoothed particle hydrodynamics modeling of shocks
Part 1 Computational Fluid Dynamics: Discrete Element Modeling of Fluidized Beds 1. Introduction: discrete element modeling-computational fluid dynamics of fluidized beds 2. Methodology: CFD-DEM of Fluidized Beds 3. Validation case study: bubbling in the fluidized bed 4. Validation Case Study: Sound Waves in Fluidized Medium
Part 2 Large, (non)spherical particle modeling in the context of fluid filtration applications (resolved Eulerian-Lagrangian) 5. Introduction: large, (non-)spherical particle modeling in the context of fluid filtration applications 6. Methodology: large (non)spherical particle modeling in the context of fluid filtration applications 7. Validation: experimental and semianalytical 8. Application and results: filter fiber engineering 9. Conclusion and vision
Part 3 Lagrangian-Lagrangian: Modeling Shocks through Inhomogeneous Media with Smoothed Particle Hydrodynamics 10. Introduction: smoothed particle hydrodynamics modeling of shocks 11. Methodology: smoothed particle hydrodynamics modeling of shocks 12. Validation: smoothed particle hydrodynamics modeling of shocks 13. Conclusion: smoothed particle hydrodynamics modeling of shocks
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826