Recently, novel metaheuristic techniques have emerged in response to the limitations of conventional approaches, leading to enhanced outcomes. These new methods introduce interesting mechanisms and innovative collaborative strategies that facilitate the efficient exploration and exploitation of extensive search spaces characterized by numerous dimensions. The objective of this book is to present advancements that discuss novel alternative metaheuristic developments that have demonstrated their effectiveness in tackling various complex problems. This book encompasses a variety of emerging…mehr
Recently, novel metaheuristic techniques have emerged in response to the limitations of conventional approaches, leading to enhanced outcomes. These new methods introduce interesting mechanisms and innovative collaborative strategies that facilitate the efficient exploration and exploitation of extensive search spaces characterized by numerous dimensions. The objective of this book is to present advancements that discuss novel alternative metaheuristic developments that have demonstrated their effectiveness in tackling various complex problems. This book encompasses a variety of emerging metaheuristic methods and their practical applications. The content is presented from a teaching perspective, making it particularly suitable for undergraduate and postgraduate students in fields such as science, electrical engineering, and computational mathematics. The book aligns well with courses in artificial intelligence, electrical engineering, and evolutionary computation. Furthermore, the material offers valuable insights to researchers within the metaheuristic and engineering communities. Similarly, engineering practitioners unfamiliar with metaheuristic computation concepts will recognize the pragmatic value of the discussed techniques. These methods transcend mere theoretical tools that have been adapted to effectively address the significant real-world problems commonly encountered in engineering domains.
Erik Cuevas received his B.S. degree with distinction in Electronics and Communications Engineering from the University of Guadalajara, Mexico, in 1995, the M.Sc. degree in Industrial Electronics from ITESO, Mexico, in 2000, and the Ph.D. degree from Freie Universität Berlin, Germany in 2006. Since 2006 he has been with the University of Guadalajara, where he is currently a full-time Professor in the Department of Computer Science. Since 2008, he is a member of the Mexican National Research System (SNI III). He is the author of several books and articles. A list of his books and publications can be seen in the CV attached to this application. His current research interest includes Meta-heuristics, computer vision, and mathematical methods. He serves as an editor in Expert System with Applications, ISA Transactions, and Applied Soft Computing, Applied Mathematical Modeling and Mathematics and Computers in Simulation. Alberto Luque Chang graduated with a Bachelor's Degree in Communications and Electronics Engineering (2013), a Master of Science in Electronic Engineering and Computing (2016), and a Doctorate in Electronics and Computing Sciences (2021) in the University of Guadalajara (UdeG). He is currently a professor in the Division of Technologies for Cyber-Human Integration at the University Center for Exact Sciences and Engineering (CUCEI) of the UdeG. Likewise, since 2021, Dr. Luque is a member of the National System of Researchers, having the distinction of National Researcher Level 1. His areas of interest in research are Metaheuristic Algorithms, Artificial Intelligence, Optimization, Machine Learning and its applications. to Image Processing. Héctor Escobar received a B.S. degree with honors in Information Systems Engineering from the Autonomous University of Sinaloa, Mexico, in 2018 and an M.S. degree in Electronics and Computer Engineering from the University of Guadalajara, Mexico, in 2021. He is part of the Universityof Guadalajara, where he is a full-time Ph.D. student in the Electronics and Computer Science program. His current research interests include Metaheuristics, computer vision, artificial intelligence, and Agent-Based Modeling.
Inhaltsangabe
Introduction to Metaheuristic Schemes: Characteristics, Properties, and Importance in Solving Optimization Problems.- Exploring the potential of agent systems for metaheuristics.- Dynamic Multimodal Function Optimization: An Evolutionary-Mean Shift Approach.- Trajectory-Driven Metaheuristic Approach using a Second-Order model.- Collaborative Hybrid Grey Wolf Optimizer: Uniting Synchrony and Asynchrony.- Efficient Image Contrast Enhancement by using the Moth Swarm Algorithm.
Introduction to Metaheuristic Schemes: Characteristics, Properties, and Importance in Solving Optimization Problems.- Exploring the potential of agent systems for metaheuristics.- Dynamic Multimodal Function Optimization: An Evolutionary-Mean Shift Approach.- Trajectory-Driven Metaheuristic Approach using a Second-Order model.- Collaborative Hybrid Grey Wolf Optimizer: Uniting Synchrony and Asynchrony.- Efficient Image Contrast Enhancement by using the Moth Swarm Algorithm.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826