Die Anwendung der Finite-Element-Methode auf nichtlineare technische Probleme hat in den letzten Jahren - auch wegen der stark angestiegenen Rechnerleistung - erheblich zugenommen. Bei nichtlinearen numerischen Simulationen sind verschiedene Aspekte zu berücksichtigen, die das Wissen und Verstehen der theoretischen Grundlagen, der zugehörigen Elementformulierungen sowie der Algorithmen zur Lösung der nichtlinearen Gleichungen voraussetzen. Hierzu soll dieses Buch beitragen, wobei die Bandbreite nichtlinearer Finite-Element-Analysen im Bereich der Festkörpermechanik abgedeckt wird. Das Buch…mehr
Die Anwendung der Finite-Element-Methode auf nichtlineare technische Probleme hat in den letzten Jahren - auch wegen der stark angestiegenen Rechnerleistung - erheblich zugenommen. Bei nichtlinearen numerischen Simulationen sind verschiedene Aspekte zu berücksichtigen, die das Wissen und Verstehen der theoretischen Grundlagen, der zugehörigen Elementformulierungen sowie der Algorithmen zur Lösung der nichtlinearen Gleichungen voraussetzen. Hierzu soll dieses Buch beitragen, wobei die Bandbreite nichtlinearer Finite-Element-Analysen im Bereich der Festkörpermechanik abgedeckt wird. Das Buch wendet sich an Studierende des Ingenieurwesens im Hauptstudium, an Doktoranden aber auch an praktisch tätige Ingenieure, die Hintergrundwissen im Bereich der Finite-Element-Methode erlangen möchten. TOC:Einleitung.- Nichtlineare Phänomene.- Kontinuumsmechanische Grundlagen.- Räumliche Diskretisierung der Grundgleichungen.- Lösungsverfahren für zeitunabhängige Probleme.- Lösungsverfahren für zeitabhängige Verfahren.- Stabilitätsprobleme.- Adaptive Verfahren.- Spezielle Strukturelemente.- Spezielle Kontinuumselemente.- Kontaktprobleme.- Tensorrechnung.
Professor Dr.-Ing. habil. P. Wriggers studied Civil Engineering at the University Hannover; he obtained his Dr.-Ing degree at the University of Hannover in 1980 on "Contact-impact problems." Since April 2022, he is Emeritus Professor at Leibniz Universität Hannover. Peter Wriggers is Member of the "Braunschweigische Wissenschaftliche Gesellschaft," the Academy of Science and Literature in Mainz, the German National Academy of Engineering "acatech" and the National Academy of Croatia. He was President of GAMM, President of GACM and Vice-President of IACM. Furthermore, he acts as Editor-in-Chief for the International Journal "Computational Mechanics" and "Computational Particle Mechanics." He was awarded the Fellowship of IACM and received the "Computational Mechanics Award" and the "IACM Award" of IACM, the "Euler Medal" of ECCOMAS as well as three honorary degrees from the Universities of Poznan, ENS Cachan and TU Darmstadt. Professor Dr.-Ing. habil. F. Aldakheel is since April 2023 professor for high performance computing at Leibniz Universität Hannover. After studying engineering in Aleppo, he initially worked at Alfurat University in Syria before moving to the Institute of Applied Mechanics at the University of Stuttgart for the master and Ph.D. studies and then the postdoc period. There he was course director for the international master's programme "Computational Mechanics of Materials and Structures" (COMMAS) as well as local director for the excellence programme "Erasmus Mundus Master of Science in Computational Mechanics". Most recently, he was Chief-Engineer/Group-Leader at the Institute for Continuum Mechanics at Leibniz Universität Hannover and Associate Professor (Honorary) at the Zienkiewicz Centre for Computational Engineering at Swansea University, UK. He has been awarded numerous awards, among them the Richard-von-Mises Prize of GAMM (Association of Applied Mathematics and Mechanics). His research interests are related tothe modeling of material behaviors, variational principles, computational solid mechanics, structural mechanics, finite and virtual element methods, multiphysics and multi-scales problems, machine learning, energy transition and experimental validation. Dr. Bla Hudobivnik studied Civil Engineering at the University of Ljubljana. He was awarded his Doctoral degree in 2016 under the supervision of Prof. Joe Korelc. He worked as Young researcher/Researcher between 2011 and October 2016 at the University of Ljubljana and after that he was employed as Postdoctoral researcher until April 2023 at the Institute of Continuum Mechanics at the Leibniz Universität Hannover. Since April 2023 he is employed in industry as simulation expert in mechanical design of batteries. His primary research fields are efficient implementation of nonlinear coupled problems, the development of the virtual element method and its application to a wide range of engineering problems. This includes 2D and 3D applications for linear and nonlinear materials, for static and dynamic solids, plate and contact problems, coupled problems (thermo-hydro-mechanics), phase field methods, multi-scale and optimization problems. Alongside research, he advises other institute members in numerical implementations due to his expert knowledge of the Software-Tool AceGen/AceFEM, developed by his doctoral advisor Prof. Korelc.
Inhaltsangabe
1. Einleitung.- 2. Nichtlineare Phänomene.- 2.1 Geomet rische Nichtlinearität.- 2.2 Physikalische Nichtlinearität.- 2.3 Nichtlinearität infolge von Randbedingungen.- 3. Kontinuumsmechanische Grundgleichungen.- 3.1. Kinematik.- 3.2 Bilanzgleichungen.- 3.3 Materialgleichungen.- 3.4 Schwache Form des Gleichgewichts, Variationsprinzipien.- 3.5 Linearisierungen.- 4. Räumliche Diskretisierung der Grundgleichungen.- 4.1 Generelles isoparametrisches Konzept.- 4.2 Diskretisierung der Grundgleichungen.- 5. Lösungsverfahren für zeitunabhängige Probleme.- 5.1 Lösung nichtlinarer Gleichungssysteme.- 5.2 Löser für lineare Gleichungssy steme.- 5.3 Beispielezu den Algorithmen und Cleichungslosem.- 6. Lösungsverfahren für zeitabhängige Probleme.- 6.1 Integration der Bewegungsgleichungen.- 6.2 Integration inelastischer Materialgleichungen beikleinen Deformationen.- 6.3 Integration der Materialgleichungen bei großen Deformationen.- 7. Stabilitätsproblerne.- 7.1 Vorbemerkungen.- 7.2 Direkte Berechnung von Stabilitätspunkten.- 7.3 Algorithmus für nichtlineare Stabilitätsprobleme.- 8. Adaptive Verfahren.- 8.1 Randwertproblem und Diskretisierung.- 8.2 Fehlerschätzer und -indikatoren.- 8.3 Fehlerschätzung für Plastizität.- 8.4 Netzverfeinerung.- 8.5 Adaptive Netzgenerierung.- 8.6 Beispiele.- 9. Spezielle Strukturelemente.- 9.1 Nichtlineares Fachwerkelement.- 9.2 Zweidimensionales geometrisch exaktes Balkenelement.- 9.3 Rotationssymmetrisches Schalenelement.- 9.4 Allgemeine Schalenelemente.- 9.5 Beispiele.- 10. Spezielle Kontinuumselemente.- 10.1 Anforderungen an Kontinuumselemente.- 10.2 Gemischte Elemente für Inkompressibilität.- 10.3 Stabilisierte finite Elemente.- 10.4 Enhanced Strain Element.- 11. Kontaktprobleme.- 1l.1 Kontaktkinernatik.- 11.2 KonstitutiveGleichungen in der Kontaktzone.- 11.3 Schwache Formulierung.- 11.4 Diskretisierung.- A. Tensorrechnung.- A.l Tensoralgebra.- A.1.l Definition eines Tensors.- A.1.2 Basisdarstellung von Vektoren und Tensoren.- A.1.3 Produkte von Vektoren und Tensoren.- A.1.4 Spezielle Formen von Tensoren.- A.1.5 Eigenwerte und Invarianten von Tensoren.- A.1.6 Tensoren höherer Stufe.- A.2 Tensoranalysis.- A.2.1 Differentiation nach einer reellen Variablen.- A.2.2 Gradientenbildung eines Feldes.- A.2.3 Divergenzbildung eines Feldes.- A.2.4 Rotation eines Vektorfeldes.- A.2.5 Ableitung der Invarianten nach einem Tensor.- A.2.6 Pull back und push forward Operationen.- A.2.7 Lie-Ableitung von Spannungstensoren.- A.2.8 Integralsätze.- Literatur.
1. Einleitung.- 2. Nichtlineare Phänomene.- 2.1 Geomet rische Nichtlinearität.- 2.2 Physikalische Nichtlinearität.- 2.3 Nichtlinearität infolge von Randbedingungen.- 3. Kontinuumsmechanische Grundgleichungen.- 3.1. Kinematik.- 3.2 Bilanzgleichungen.- 3.3 Materialgleichungen.- 3.4 Schwache Form des Gleichgewichts, Variationsprinzipien.- 3.5 Linearisierungen.- 4. Räumliche Diskretisierung der Grundgleichungen.- 4.1 Generelles isoparametrisches Konzept.- 4.2 Diskretisierung der Grundgleichungen.- 5. Lösungsverfahren für zeitunabhängige Probleme.- 5.1 Lösung nichtlinarer Gleichungssysteme.- 5.2 Löser für lineare Gleichungssy steme.- 5.3 Beispielezu den Algorithmen und Cleichungslosem.- 6. Lösungsverfahren für zeitabhängige Probleme.- 6.1 Integration der Bewegungsgleichungen.- 6.2 Integration inelastischer Materialgleichungen beikleinen Deformationen.- 6.3 Integration der Materialgleichungen bei großen Deformationen.- 7. Stabilitätsproblerne.- 7.1 Vorbemerkungen.- 7.2 Direkte Berechnung von Stabilitätspunkten.- 7.3 Algorithmus für nichtlineare Stabilitätsprobleme.- 8. Adaptive Verfahren.- 8.1 Randwertproblem und Diskretisierung.- 8.2 Fehlerschätzer und -indikatoren.- 8.3 Fehlerschätzung für Plastizität.- 8.4 Netzverfeinerung.- 8.5 Adaptive Netzgenerierung.- 8.6 Beispiele.- 9. Spezielle Strukturelemente.- 9.1 Nichtlineares Fachwerkelement.- 9.2 Zweidimensionales geometrisch exaktes Balkenelement.- 9.3 Rotationssymmetrisches Schalenelement.- 9.4 Allgemeine Schalenelemente.- 9.5 Beispiele.- 10. Spezielle Kontinuumselemente.- 10.1 Anforderungen an Kontinuumselemente.- 10.2 Gemischte Elemente für Inkompressibilität.- 10.3 Stabilisierte finite Elemente.- 10.4 Enhanced Strain Element.- 11. Kontaktprobleme.- 1l.1 Kontaktkinernatik.- 11.2 KonstitutiveGleichungen in der Kontaktzone.- 11.3 Schwache Formulierung.- 11.4 Diskretisierung.- A. Tensorrechnung.- A.l Tensoralgebra.- A.1.l Definition eines Tensors.- A.1.2 Basisdarstellung von Vektoren und Tensoren.- A.1.3 Produkte von Vektoren und Tensoren.- A.1.4 Spezielle Formen von Tensoren.- A.1.5 Eigenwerte und Invarianten von Tensoren.- A.1.6 Tensoren höherer Stufe.- A.2 Tensoranalysis.- A.2.1 Differentiation nach einer reellen Variablen.- A.2.2 Gradientenbildung eines Feldes.- A.2.3 Divergenzbildung eines Feldes.- A.2.4 Rotation eines Vektorfeldes.- A.2.5 Ableitung der Invarianten nach einem Tensor.- A.2.6 Pull back und push forward Operationen.- A.2.7 Lie-Ableitung von Spannungstensoren.- A.2.8 Integralsätze.- Literatur.
Rezensionen
From the reviews:
"This book describes, besides the physical and mathematical background of finite element method (FEM), special discretization techniques and algorithms which have to be applied to nonlinear problems of solid mechanics. ... The book is intended for graduate students of mechanical and civil engineering who want to familiarize themselves with numerical methods applied to problems in solid mechanics. This book applies also to PhD students and engineers working in industry who need further background information on the application of finite elements to nonlinear problems." (Razvan Raducanu, Zentrablatt MATH, Vol. 1153, 2009)
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826