Roberto Livi (Universita degli Studi di Firenze), Paolo Politi (Firenze Istituto dei Sistemi Complessi)
Nonequilibrium Statistical Physics
Roberto Livi (Universita degli Studi di Firenze), Paolo Politi (Firenze Istituto dei Sistemi Complessi)
Nonequilibrium Statistical Physics
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This second edition presents a comprehensive overview of nonequilibrium statistical physics, covering the underlying theory, key aspects of nonequilibrium phase transitions, and modern applications. The book is accessible to graduate students and a pedagogical approach is adopted throughout.
Andere Kunden interessierten sich auch für
Esteban A. Calzetta (Argentina Universidad de Buenos Aires)Nonequilibrium Quantum Field Theory137,99 €
Carlo HeissenbergClassical and Quantum Statistical Physics67,99 €
Active Matter and Nonequilibrium Statistical Physics88,99 €
Fabien Paillusson (University of Lincoln)Statistical Mechanics for Physicists and Mathematicians82,99 €
Mehran Kardar (Massachusetts Institute of Technology)Statistical Physics of Particles77,99 €
R. H. FowlerStatistical Mechanics78,99 €
Pierre Gaspard (Universite Libre de Bruxelles)The Statistical Mechanics of Irreversible Phenomena98,99 €-
-
-
This second edition presents a comprehensive overview of nonequilibrium statistical physics, covering the underlying theory, key aspects of nonequilibrium phase transitions, and modern applications. The book is accessible to graduate students and a pedagogical approach is adopted throughout.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- 2 Revised edition
- Seitenzahl: 532
- Erscheinungstermin: 27. Mai 2025
- Englisch
- Abmessung: 260mm x 183mm x 33mm
- Gewicht: 1172g
- ISBN-13: 9781316512302
- ISBN-10: 1316512304
- Artikelnr.: 73534166
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- 2 Revised edition
- Seitenzahl: 532
- Erscheinungstermin: 27. Mai 2025
- Englisch
- Abmessung: 260mm x 183mm x 33mm
- Gewicht: 1172g
- ISBN-13: 9781316512302
- ISBN-10: 1316512304
- Artikelnr.: 73534166
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Roberto Livi is Honorary Professor of Theoretical Physics at the University of Florence and an associate member of the National Institute of Nuclear Physics (INFN) and of the Institute for Complex Systems of the National Research Council (CNR). His research is focused on nonequilibrium statistical physics, and he has extensive experience teaching courses on statistical physics. He is the current President of the Italian Society of Statistical Physics.
Preface to the second edition
Acknowledgements
Notations and acronyms
1. Kinetic theory and the Boltzmann equation
2. Brownian motion, Langevin and Fokker-Planck equations
3. Fluctuations and their probability
4. Linear response theory and transport phenomena
5. From equilibrium to out-of-equilibrium phase transitions: Driven lattice gases
6. Absorbing phase transitions
7. Stochastic dynamics of surfaces and interfaces
8. Phase-ordering kinetics
9. Highlights on pattern formation
Appendix A: Binary elastic collisions in the hard sphere gas
Appendix B: Maxwell-Boltzmann distribution in the uniform case
Appendix C: Physical quantities from the Boltzmann equation in the nonuniform Case
Appendix D: Outine of the Chapman-Enskog method
Appendix E: First-order approximation to Hydrodynamics
Appendix F: Spectral properties of stochastic matrices
Appendix G: The deterministic KPZ equation and the Burgers equation
Appendix J: Stochastic differential equation for the energy of the Brownian particle
Appendix K: The Kramers-Moyal expansion
Appendix L: Probability distributions
Appendix M: The diffusion equation and the Random Walk
Appendix N: Linear response in quantum systems
Appendix O: Mathematical properties of response functions
Appendix P: The Van der Waals equation
Appendix Q: Derivation of the Ginzburg-Landau free energy
Appendix R: The perturbative renormalization group for KPZ
Appendix S: TASEP: Map method and simulations
Appendix T: Bridge Model: Mean-field and simulations
Appendix U: The Allen-Cahn equation
Appendix V: The Gibbs-Thomson relation
Appendix W: The Rayleigh-Bénard instability
Appendix X: General conditions for the Turing instability
Appendix Y: Steady states of the one-dimensional TDGL equation
Appendix Z: Multiscale analysis
Index.
Acknowledgements
Notations and acronyms
1. Kinetic theory and the Boltzmann equation
2. Brownian motion, Langevin and Fokker-Planck equations
3. Fluctuations and their probability
4. Linear response theory and transport phenomena
5. From equilibrium to out-of-equilibrium phase transitions: Driven lattice gases
6. Absorbing phase transitions
7. Stochastic dynamics of surfaces and interfaces
8. Phase-ordering kinetics
9. Highlights on pattern formation
Appendix A: Binary elastic collisions in the hard sphere gas
Appendix B: Maxwell-Boltzmann distribution in the uniform case
Appendix C: Physical quantities from the Boltzmann equation in the nonuniform Case
Appendix D: Outine of the Chapman-Enskog method
Appendix E: First-order approximation to Hydrodynamics
Appendix F: Spectral properties of stochastic matrices
Appendix G: The deterministic KPZ equation and the Burgers equation
Appendix J: Stochastic differential equation for the energy of the Brownian particle
Appendix K: The Kramers-Moyal expansion
Appendix L: Probability distributions
Appendix M: The diffusion equation and the Random Walk
Appendix N: Linear response in quantum systems
Appendix O: Mathematical properties of response functions
Appendix P: The Van der Waals equation
Appendix Q: Derivation of the Ginzburg-Landau free energy
Appendix R: The perturbative renormalization group for KPZ
Appendix S: TASEP: Map method and simulations
Appendix T: Bridge Model: Mean-field and simulations
Appendix U: The Allen-Cahn equation
Appendix V: The Gibbs-Thomson relation
Appendix W: The Rayleigh-Bénard instability
Appendix X: General conditions for the Turing instability
Appendix Y: Steady states of the one-dimensional TDGL equation
Appendix Z: Multiscale analysis
Index.
Preface to the second edition
Acknowledgements
Notations and acronyms
1. Kinetic theory and the Boltzmann equation
2. Brownian motion, Langevin and Fokker-Planck equations
3. Fluctuations and their probability
4. Linear response theory and transport phenomena
5. From equilibrium to out-of-equilibrium phase transitions: Driven lattice gases
6. Absorbing phase transitions
7. Stochastic dynamics of surfaces and interfaces
8. Phase-ordering kinetics
9. Highlights on pattern formation
Appendix A: Binary elastic collisions in the hard sphere gas
Appendix B: Maxwell-Boltzmann distribution in the uniform case
Appendix C: Physical quantities from the Boltzmann equation in the nonuniform Case
Appendix D: Outine of the Chapman-Enskog method
Appendix E: First-order approximation to Hydrodynamics
Appendix F: Spectral properties of stochastic matrices
Appendix G: The deterministic KPZ equation and the Burgers equation
Appendix J: Stochastic differential equation for the energy of the Brownian particle
Appendix K: The Kramers-Moyal expansion
Appendix L: Probability distributions
Appendix M: The diffusion equation and the Random Walk
Appendix N: Linear response in quantum systems
Appendix O: Mathematical properties of response functions
Appendix P: The Van der Waals equation
Appendix Q: Derivation of the Ginzburg-Landau free energy
Appendix R: The perturbative renormalization group for KPZ
Appendix S: TASEP: Map method and simulations
Appendix T: Bridge Model: Mean-field and simulations
Appendix U: The Allen-Cahn equation
Appendix V: The Gibbs-Thomson relation
Appendix W: The Rayleigh-Bénard instability
Appendix X: General conditions for the Turing instability
Appendix Y: Steady states of the one-dimensional TDGL equation
Appendix Z: Multiscale analysis
Index.
Acknowledgements
Notations and acronyms
1. Kinetic theory and the Boltzmann equation
2. Brownian motion, Langevin and Fokker-Planck equations
3. Fluctuations and their probability
4. Linear response theory and transport phenomena
5. From equilibrium to out-of-equilibrium phase transitions: Driven lattice gases
6. Absorbing phase transitions
7. Stochastic dynamics of surfaces and interfaces
8. Phase-ordering kinetics
9. Highlights on pattern formation
Appendix A: Binary elastic collisions in the hard sphere gas
Appendix B: Maxwell-Boltzmann distribution in the uniform case
Appendix C: Physical quantities from the Boltzmann equation in the nonuniform Case
Appendix D: Outine of the Chapman-Enskog method
Appendix E: First-order approximation to Hydrodynamics
Appendix F: Spectral properties of stochastic matrices
Appendix G: The deterministic KPZ equation and the Burgers equation
Appendix J: Stochastic differential equation for the energy of the Brownian particle
Appendix K: The Kramers-Moyal expansion
Appendix L: Probability distributions
Appendix M: The diffusion equation and the Random Walk
Appendix N: Linear response in quantum systems
Appendix O: Mathematical properties of response functions
Appendix P: The Van der Waals equation
Appendix Q: Derivation of the Ginzburg-Landau free energy
Appendix R: The perturbative renormalization group for KPZ
Appendix S: TASEP: Map method and simulations
Appendix T: Bridge Model: Mean-field and simulations
Appendix U: The Allen-Cahn equation
Appendix V: The Gibbs-Thomson relation
Appendix W: The Rayleigh-Bénard instability
Appendix X: General conditions for the Turing instability
Appendix Y: Steady states of the one-dimensional TDGL equation
Appendix Z: Multiscale analysis
Index.







