Iosif I. Vorovich
Nonlinear Theory of Shallow Shells
Herausgegeben:Lebedev, Leonid P.;Übersetzung:Grinfeld, M.
Iosif I. Vorovich
Nonlinear Theory of Shallow Shells
Herausgegeben:Lebedev, Leonid P.;Übersetzung:Grinfeld, M.
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book presents rigorous treatment of boundary value problems in nonlinear theory of shallow shells. The consideration of the problems is carried out using methods of nonlinear functional analysis.
Andere Kunden interessierten sich auch für
Pierre LadevezeNonlinear Computational Structural Mechanics38,99 €
Samuel KotzStress-Strength Model and Its Generalizations, The: Theory and Applications107,99 €
Yakov G SinaiSelecta I83,99 €
Linear Theories of Elasticity and Thermoelasticity123,99 €
J Susan MiltonIntroduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences366,99 €
Jianlin LiuLecture Notes on Theoretical Mechanics56,99 €
Jorge Luis González-VelázquezMechanical Behavior and Fracture of Engineering Materials113,99 €-
-
-
This book presents rigorous treatment of boundary value problems in nonlinear theory of shallow shells. The consideration of the problems is carried out using methods of nonlinear functional analysis.
Produktdetails
- Produktdetails
- Applied Mathematical Sciences 133
- Verlag: Springer / Springer New York / Springer, Berlin
- Artikelnr. des Verlages: 978-1-4757-7288-3
- Softcover reprint of the original 1st ed. 1999
- Seitenzahl: 408
- Erscheinungstermin: 17. Mai 2013
- Englisch
- Abmessung: 235mm x 155mm x 23mm
- Gewicht: 632g
- ISBN-13: 9781475772883
- ISBN-10: 1475772882
- Artikelnr.: 39941513
- Herstellerkennzeichnung
- Springer-Verlag GmbH
- Tiergartenstr. 17
- 69121 Heidelberg
- ProductSafety@springernature.com
- Applied Mathematical Sciences 133
- Verlag: Springer / Springer New York / Springer, Berlin
- Artikelnr. des Verlages: 978-1-4757-7288-3
- Softcover reprint of the original 1st ed. 1999
- Seitenzahl: 408
- Erscheinungstermin: 17. Mai 2013
- Englisch
- Abmessung: 235mm x 155mm x 23mm
- Gewicht: 632g
- ISBN-13: 9781475772883
- ISBN-10: 1475772882
- Artikelnr.: 39941513
- Herstellerkennzeichnung
- Springer-Verlag GmbH
- Tiergartenstr. 17
- 69121 Heidelberg
- ProductSafety@springernature.com
The Main Boundary Value Problems in the Nonlinear Theory of Shallow Shells.- General Mathematical Questions.- Topological Methods Applied to Solvability of the Main Boundary Value Problems of the Nonlinear Theory of Shallow Sells in Displacements.- The Tolopological Method in the Problem of Solvability of the Main Boundary Value Problems in the Nonlinear Theory of Shallow Shells with an Airy Stress Function.- The Variational Approach to the Problem of Solvability of Boundary Value Problems of Nonlinear Shallow Shell Theory.- Numerical-Analytical Methods in the Nonlinear Theory of Shallow Shells.- Direct Methods in the Nonlinear Theory of Shallow Shells.- Formulation of the Problem of Stability. Global Uniqueness of Solutions. Stiffness of Shells. Well-Posedness Classes.- Stability in the Large of the Membrane State of a Shallow Shell. Existence of the Lower Critical Value.- A Probabilistic Approach to the Problem of Stability of Shallow Shells.
The Main Boundary Value Problems in the Nonlinear Theory of Shallow Shells.- General Mathematical Questions.- Topological Methods Applied to Solvability of the Main Boundary Value Problems of the Nonlinear Theory of Shallow Sells in Displacements.- The Tolopological Method in the Problem of Solvability of the Main Boundary Value Problems in the Nonlinear Theory of Shallow Shells with an Airy Stress Function.- The Variational Approach to the Problem of Solvability of Boundary Value Problems of Nonlinear Shallow Shell Theory.- Numerical-Analytical Methods in the Nonlinear Theory of Shallow Shells.- Direct Methods in the Nonlinear Theory of Shallow Shells.- Formulation of the Problem of Stability. Global Uniqueness of Solutions. Stiffness of Shells. Well-Posedness Classes.- Stability in the Large of the Membrane State of a Shallow Shell. Existence of the Lower Critical Value.- A Probabilistic Approach to the Problem of Stability of Shallow Shells.







