Lattice Boltzmann methods are a promising approach for the numerical solution of fluid-dynamic problems. We consider the one-dimensional Goldstein-Taylor model with the aim to answer some of the questions concerning the numerical analysis of lattice Boltzmann schemes. Discretizations for the solution of the heat equation are presented for a selection of boundary conditions. Stability and convergence of the solutions are proved by employing energy estimates and explicit Fourier representations.
Bitte wählen Sie Ihr Anliegen aus.
Rechnungen
Retourenschein anfordern
Bestellstatus
Storno