Numerical relativity has emerged as the key tool to model gravitational waves that are emitted when two black holes collide. This book provides a pedagogical, accessible and concise introduction to the subject for non-experts, acquainting them with the key concepts underlying publicly available numerical relativity codes.
Numerical relativity has emerged as the key tool to model gravitational waves that are emitted when two black holes collide. This book provides a pedagogical, accessible and concise introduction to the subject for non-experts, acquainting them with the key concepts underlying publicly available numerical relativity codes.
Thomas W. Baumgarte is the William R. Kenan Jr. Professor of Physics at Bowdoin College in Brunswick, Maine. His work in numerical relativity and relativistic astrophysics has been recognized with prizes and fellowships from the Guggenheim Foundation, the Humboldt Foundation, the American Physical Society, and the Simons Foundation. Stuart Shapiro and he have previously co-authored the graduate-level text Numerical Relativity: Solving Einstein's Equations on the Computer (Cambridge, 2010).
Inhaltsangabe
Preface 1. Newton's and Einstein's gravity 2. Foliations of spacetime: constraint and evolution equations 3. Solving the constraint equations 4 Solving the evolution equations 5. Numerical simulations of black-hole binaries Epilogue Appendix A. A brief review of tensor properties Appendix B. A brief introduction to some numerical techniques Appendix C. A very brief introduction to matter sources Appendix D. A summary of important results Appendix E. Answers to selected problems References Index.
Preface; Suggestions for using this book; 1. General relativity preliminaries; 2. The 3+1 decomposition of Einstein's equations; 3. Constructing initial data; 4. Choosing coordinates: the lapse and shift; 5. Matter sources; 6. Numerical methods; 7. Locating black hole horizons; 8. Spherically symmetric spacetimes; 9. Gravitational waves; 10. Collapse of collisionless clusters in axisymmetry; 11. Recasting the evolution equations; 12. Binary black hole initial data; 13. Binary black hole evolution; 14. Rotating stars; 15. Binary neutron star initial data; 16. Binary neutron star evolution; 17. Binary black hole-neutron stars: initial data and evolution; 18. Epilogue; Appendixes; References; Index.
Preface 1. Newton's and Einstein's gravity 2. Foliations of spacetime: constraint and evolution equations 3. Solving the constraint equations 4 Solving the evolution equations 5. Numerical simulations of black-hole binaries Epilogue Appendix A. A brief review of tensor properties Appendix B. A brief introduction to some numerical techniques Appendix C. A very brief introduction to matter sources Appendix D. A summary of important results Appendix E. Answers to selected problems References Index.
Preface; Suggestions for using this book; 1. General relativity preliminaries; 2. The 3+1 decomposition of Einstein's equations; 3. Constructing initial data; 4. Choosing coordinates: the lapse and shift; 5. Matter sources; 6. Numerical methods; 7. Locating black hole horizons; 8. Spherically symmetric spacetimes; 9. Gravitational waves; 10. Collapse of collisionless clusters in axisymmetry; 11. Recasting the evolution equations; 12. Binary black hole initial data; 13. Binary black hole evolution; 14. Rotating stars; 15. Binary neutron star initial data; 16. Binary neutron star evolution; 17. Binary black hole-neutron stars: initial data and evolution; 18. Epilogue; Appendixes; References; Index.
Rezensionen
'Numerical relativity has come of age in the last few years, and Baumgarte and Shapiro have produced the first textbook on the subject. And what a book this is! Sufficiently complete to be an encyclopedia, yet accessible enough to be a genuine learning manual, the book is exceedingly well written. It covers virtually all aspects of numerical relativity, from formalism to the most modern application, and it is replete with beautiful and helpful diagrams. The book will serve as a useful reference to the researcher, and a source of enlightenment to many a student.' Eric Poisson, University of Guelph
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826