Mehdi Hanifzadeh
Optimization for Thermal Design of Shell and Tube Heat Exchangers
Mehdi Hanifzadeh
Optimization for Thermal Design of Shell and Tube Heat Exchangers
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
A comprehensive guide to ensuring efficient, accurate, and cost-effective design of shell and tube heat exchangers across a variety of industries Effective thermal design of shell and tube heat exchangers is essential for maintaining performance and reducing costs in industries such as oil, gas, petrochemicals, and energy. In a field where heat exchangers are a significant investment, understanding how to design them efficiently is vital. Optimization for Thermal Design of Shell and Tube Heat Exchangers presents a clear, practical approach to achieving optimal results with minimal trials.…mehr
Andere Kunden interessierten sich auch für
- Marta HorechaResponsive hydrogel-based core-shell particles and coatings38,99 €
- Trapti SharmaStudies on Some organic Ion Exchangers in Purification of Water50,99 €
- Mahamudur IslamOrganic ¿ Inorganic Hybrid Ion-exchangers and Layered Double Hydroxides51,99 €
- Deepika P JoshiEffect of Solvents on Different Properties of Core-Shell Nanoparticles26,99 €
- Lakhya Jyoti BorthakurDevelopment of Core-shell latex particles by Emulsion Polymerization38,99 €
- Mohsen AhmadipourCore-Shell Nanoparticle: Mg(X)Fe(1-X)O/SiO2,characterization32,99 €
- Natalia ChubarNext generation inorganic anion exchangers41,99 €
-
-
-
A comprehensive guide to ensuring efficient, accurate, and cost-effective design of shell and tube heat exchangers across a variety of industries Effective thermal design of shell and tube heat exchangers is essential for maintaining performance and reducing costs in industries such as oil, gas, petrochemicals, and energy. In a field where heat exchangers are a significant investment, understanding how to design them efficiently is vital. Optimization for Thermal Design of Shell and Tube Heat Exchangers presents a clear, practical approach to achieving optimal results with minimal trials. Incorporating real-world examples and fast-track methodologies, this authoritative guide provides valuable tools to improve efficiency and manage data effectively while running design programs. Mehdi Hanifzadeh, a seasoned process principal engineer with more than 38 years of experience, offers proven strategies to reduce construction and maintenance costs while maintaining high design standards. Providing step-by-step guidance to designing these essential components with accuracy and speed, this book: * Designed in oil refineries, gas processing, petrochemicals and power plants. * Helps readers reduce construction costs while complying with industry design standards * Focuses on practical design methods and data management for cost-effective, high-quality outcomes. * Provides clear and transparent design and calculation methods illustrated through numerous real-world examples and case studies * Serves as a valuable educational and training resource for readers This title is an invaluable resource for new designers and experienced professionals specializing in the design and optimization of heat exchangers, and an ideal textbook for advanced chemical and mechanical engineering students taking courses in process design, energy systems, and industrial equipment.
Produktdetails
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 320
- Erscheinungstermin: 9. Mai 2025
- Englisch
- Abmessung: 254mm x 178mm x 19mm
- Gewicht: 907g
- ISBN-13: 9781394313020
- ISBN-10: 1394313020
- Artikelnr.: 71593277
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Wiley
- Seitenzahl: 320
- Erscheinungstermin: 9. Mai 2025
- Englisch
- Abmessung: 254mm x 178mm x 19mm
- Gewicht: 907g
- ISBN-13: 9781394313020
- ISBN-10: 1394313020
- Artikelnr.: 71593277
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Mehdi Hanifzadeh is an experienced process principal engineer in the oil, gas, and petrochemical industries. He has actively participated in numerous projects in these sectors, making valuable contributions to well-known international companies. He served as a member of the HTFS review panel for thermal design software. Mr. Hanifzadeh's expertise in heat transfer equipment design is highly regarded, and his innovative technical recommendations and implementation methods have consistently improved the practices of the design teams of leading manufacturers in the heat transfer equipment industry.
Preface xiii
About This Book xv
The Audience / Reader xvii
Global Computer Software for Thermal Design xviii
1 A Brief Overview 1
1.1 Short Summary for Each Chapter 1
1.2 Shell and Tube Heat Exchangers 3
1.3 Step-by-step Thermal Design Methodology 4
1.4 Why Shell and Tube? 5
1.5 Scope of Shell and Tube 5
1.6 Shell and Tube Heat Exchanger Components / Definition 6
1.7 Fouling 13
1.7.1 Effects of Fouling 14
1.7.2 Different Kinds of Fouling 14
1.7.3 Variables That Fouling Depends on 18
1.7.4 Fouling Influence in Heat Transfer 18
1.8 Thermodynamic Analysis of a Heat Exchanger 18
1.8.1 First Law of Thermodynamics Summary 18
1.8.2 Second Law of Thermodynamics Summary 19
1.8.3 Energy Conservation for a Heat Exchanger 19
2 Required Data for Starting Thermal Design 21
2.1 Process Data Sheet 21
2.2 Contract and Project Specifications 24
3 Practical Input Data for Thermal Design (Using Software) 25
3.1 Calculation Modes 25
3.2 Process Data for Hot / Cold Side 25
3.3 Physical Properties for Hot / Cold Side 26
3.4 Fouling Resistance Group 27
3.4.1 Sample of Fouling Resistance Data 27
3.5 Tubular Exchanger Manufacturers Association TYPE 28
3.5.1 Tubular Exchanger Manufacturers Association's Three Letters 28
3.5.2 Front Head Type 28
3.5.2.1 Type-A: Bolted Channel and Removable Cover 28
3.5.2.2 Type-B: Bonnet Type 30
3.5.2.3 Type-C: Channel Integral with Tube Sheet and Removable Bundle 30
3.5.2.4 Type-N: Channel Integral with Tube Sheet and Nonremovable Bundle 30
3.5.2.5 Type-D: High-pressure Enclosure 31
3.5.3 Selection Criteria for Front-head TEMA Type 31
3.5.4 Shell Type 32
3.5.4.1 Type-E: Single Pass Shell Type 32
3.5.4.2 Type-F: Two Pass Shell Type 33
3.5.4.3 Type-J: Divided Flow Shell Type 33
3.5.4.4 Type-G: Split Flow Shell Type 34
3.5.4.5 Type-H: Double Split Flow Shell Type 35
3.5.4.6 Type-X: Cross-flow Shell Type 35
3.5.4.7 Type-K: Kettle Type 36
3.5.5 Rear Head Type 37
3.5.5.1 Fixed Tube Sheet (TEMA Type-L, -M, and -N) 37
3.5.5.2 Type-U: U-tube 39
3.5.5.3 Floating Head Types (TEMA Type-S, -T, -W, and -P) 40
3.5.6 Selection Criteria for Rear Head TEMA Type 43
3.5.6.1 The Way to Determine the Fixed Tube Sheet Model 43
3.5.6.2 The Way to Determine the U-tube Type 44
3.5.6.3 The Ways to Determine the Floating Head Type 44
3.5.7 Possible TEMA Type Configuration 44
3.5.8 Common TEMA Type Heat Exchangers 44
3.5.8.1 Fixed Tube Sheet 44
3.5.8.2 Removable Bundle, U-tube 46
3.5.8.3 Removable Bundle 48
3.6 TEMA Class 50
3.7 Shell Inside Diameter 51
3.8 Exchanger Orientation 52
3.9 Hot / Cold Fluid Placement 53
3.9.1 General Items 53
3.9.2 Condensers 54
3.9.3 Reboilers 54
3.10 Examples of TEMA Type Selection 57
3.11 Heat Load and Effective Mean Temperature Difference 58
3.11.1 Heat Transfer Rate 58
3.11.2 Heat Release Curve 59
3.12 Number of Shells in Series and Parallel 61
3.12.1 Temperature Cross 61
3.12.2 Two Methods 62
3.12.3 Results and Conclusion 63
3.12.4 Stacking Shells in Series 63
3.12.5 Number of Shells in Parallel 65
3.13 Tube Type 65
3.13.1 Plain Tubes 65
3.13.2 Finned Tubes 65
3.13.2.1 Longitudinal Finned Tubes 65
3.14 Tube OD 66
3.14.1 TEMA Data 66
3.14.2 Tube Average Wall Thickness 67
3.14.3 Tube Pitch 67
3.15 Tube Pattern 67
3.16 Tube Length, Total, and Effective 69
3.16.1 Total Tube Length 69
3.16.2 Effective Tube Length 69
3.16.3 TEMA Recommendation 69
3.16.4 Refinery and Petrochemical Recommendation 69
3.16.5 Example of Heat Exchanger Price 70
3.17 Tube Pass 70
3.17.1 Number of Tube Passes 70
3.18 Material of Construction 71
3.18.1 Materials Normally Used 72
3.18.2 Factors That Used in Selecting Material 73
3.18.3 Important Precautions in Choosing Tube Materials 73
3.19 Tube Sheet 74
3.19.1 Tube Sheet Layout 74
3.19.2 Tube-pass Partition Plate 75
3.19.3 Basic Groups 75
3.19.3.1 Quadrant Layout 75
3.19.3.2 Ribbon Layout 76
3.19.3.3 Mixed or H-banded Layout 76
3.19.4 Pass-lane Width 76
3.20 Baffle Type 77
3.20.1 Single Segmental 78
3.20.2 No Tube in Windows (NTIW) 78
3.20.3 Double Segmental 78
3.20.4 Rod Baffle 79
3.20.5 Old Baffle Types 79
3.20.5.1 Triple Segmental 79
3.20.5.2 Orifice Baffle 80
3.20.5.3 Disk and Doughnut Baffle 80
3.21 Baffle Cut Percent 81
3.21.1 Optimum Data 81
3.21.2 Baffle Cut Orientation 82
3.21.2.1 Vertical 82
3.21.2.2 Horizontal 82
3.22 Baffle Spacing 83
3.22.1 Baffle Spacing - Center to Center 83
3.22.2 Baffle Spacing - Inlet / Outlet 83
3.22.3 Number of Baffles 84
3.22.4 Number of Baffle Spacing / Cross-passes 85
3.22.5 Support Plates per Baffle Space 85
3.22.6 U-bend Support Plate 85
3.23 Flow Fraction in Shell-side 85
3.24 Clearances and Shell-side Leakages 87
3.24.1 Clearances 87
3.24.2 Seal Strip Pairs 87
3.24.3 Seal Rods 88
3.24.4 Tie Rods 88
3.25 Nozzle Data 89
3.25.1 Shell-side Nozzle Data 89
3.25.1.1 Number of Nozzles 89
3.25.1.2 Nozzle Type and Location 90
3.25.2 Tube-side Nozzle Data 90
3.25.2.1 Number of Nozzles 90
3.25.2.2 Nozzle Type and Location 90
3.26 Impingement Plate 90
3.26.1 TEMA Recommendation 91
3.26.1.1 Shell-side Inlet Nozzle 91
3.26.1.2 Tube-side Inlet Nozzle 91
3.26.1.3 Gaskets 91
3.26.1.4 Vent and Drain Connection 92
3.26.1.5 Insulation 92
3.26.1.6 Supporting 92
3.27 Reboilers 92
3.27.1 Reboiler Type Selection Flow Chart 92
3.27.2 Vertical Thermosiphon Reboiler 93
3.27.3 Horizontal Thermosiphon Reboiler 95
3.27.4 Kettle-type Reboiler 96
3.27.5 Internal Reboilers 97
3.27.6 Pump-through Reboilers 97
3.28 Vibration of Tubes 98
3.28.1 Introduction 98
3.28.2 Important Recommendation 98
3.28.3 Flow-induced Vibration 99
3.28.4 Region Consideration 99
3.28.5 Damaging Effect of Vibration on Tube-side 100
3.28.6 Tube Natural Frequency 102
3.28.7 Phenomena of Tube Vibrations 102
3.28.8 Prediction of Vibration 104
3.28.9 Final Result 104
3.29 Emerging New Technology 104
3.29.1 Cryogenic Heat Exchanger 105
3.29.1.1 Coiled Tube Heat Exchanger 106
3.29.1.2 Cryogenic Heat Exchanger Insulation 106
3.29.2 Graphite Heat Exchanger 107
3.29.3 Glass Heat Exchanger 108
3.29.4 Teflon Heat Exchanger 109
3.29.5 EM-baffle-expanded Metal Baffles Type 111
3.29.5.1 Comparison Between a Conventional Baffle / EM Baffle 112
3.29.6 Twisted Tube Type 113
3.29.7 Helical Baffles Type 115
3.30 Basic Principles Path of Thermal Design in Computer Software 117
3.30.1 Using Computer Software 117
3.30.2 History of Calculation Methods 117
3.30.3 Different Steps in Thermal Design by Software 118
4 Features of an Optimal Design for a Heat Exchanger 122
4.1 Introduction: Result Output Data (of Any Computer Program) 122
4.2 Overdesign Percent 123
4.3 Calculated Pressure Drop 123
4.4 Flow Velocity / Rho-V 2 Analysis 123
4.5 Shell-side Flow Distribution 124
4.6 Baffle Spacing Center to Center 125
4.7 Effective Mean Temperature Difference 125
4.8 Shell and Tube Heat Transfer Coefficients 125
4.9 Two-phase Flow Regimes 126
4.9.1 Condensing Flow Regime 126
4.9.2 Vaporization Flow Regime 126
4.10 Vibration Analysis 127
4.11 Kettle-type Output Data 127
5 Optimization Logic 128
5.1 The Factors That Influence the Capital Cost of an Exchanger 128
5.2 Step-by-step Optimization Method 130
5.2.1 How to Control General Item 131
5.2.2 How to Control Tube-side Pressure Drop 132
5.2.3 How to Control Shell-side Pressure Drop 133
5.2.4 How to Control Tube-side Velocity / Heat Transfer Parameters 135
5.2.5 How to Control Shell-side Velocity / Heat Transfer Parameters 135
5.2.6 How to Control and Remove Vibration Problem 136
6 Practical Thermal Design for Real Example Cases 138
6.1 E-001: Water Cooler- 1 140
6.1.1 Isomer Unit - Refinery Complex 140
6.2 E-002: Water Cooler- 2 144
6.2.1 NHT Unit - Refinery Complex 144
6.3 E-003: Gas Water Cooler- 3 148
6.3.1 Methanol Plant 148
6.4 E-004: Lube Oil Water Cooler- 4 155
6.4.1 NHT Unit - Aromatic Complex 155
6.5 E-005: No Phase Change- 1 160
6.5.1 CCR Unit - Condensate Refinery 160
6.6 E-006: No Phase Change- 2 165
6.6.1 CDU Unit - Refinery Complex 165
6.7 E-007: Boiler Feed Water Heater - No Phase Change- 3 169
6.7.1 Gas Reformer Unit - Methanol Plant 169
6.8 E-008: Feed and Effluent Heat Exchanger- 1 175
6.8.1 Aromatic Plant 175
6.9 E-009: Feed and Effluent Heat Exchanger- 2 181
6.9.1 Aromatic Plant 181
6.10 E-010: Condenser- 1 186
6.10.1 Olefin Plant 186
6.11 E-011: Condenser- 2 191
6.11.1 NHT Plant - Refinery Complex 191
6.12 E-012: Condenser- 3 197
6.12.1 Aromatic Plant 197
6.13 E-013: Reactor Effluent Condenser- 4 204
6.13.1 NHT Unit - Refinery 204
6.14 E-014: Kettle Type-1 - C3 Refrigerator 209
6.14.1 C2 Recovery Gas Plant 209
6.15 E-015: Kettle Type-2 - Steam Boiler 214
6.15.1 CDU Unit - Refinery Complex 214
6.16 E-016: Kettle Type-3 - Reboiler 218
6.16.1 Amine Unit - Refinery Complex 218
6.17 E-017: Horizontal Thermosiphon Reboiler- 1 223
6.17.1 Refinery Complex 223
6.18 E-018: Horizontal Thermosiphon Reboiler- 2 229
6.18.1 Refinery Complex 229
6.19 E-019: Vertical Thermosiphon Reboiler- 1 238
6.19.1 Refinery Complex 238
6.20 E-020: Vertical Thermosiphon Reboiler- 2 246
6.20.1 Refinery Complex 246
7 Brief Description of Activities After Thermal Design 254
7.1 Mechanical Design 255
7.1.1 General Guidelines for Mechanical Design 255
7.1.2 Thickness Design for All Pressure Parts 256
7.1.3 Finalization of Tube-sheet Layout 256
7.1.4 Tube Sheet 257
7.1.4.1 Tube Sheets Used in Different Kinds of Exchangers 257
7.1.4.2 Removable Tube Sheet Types 257
7.1.4.3 Tube Sheet Material and Cladding 258
7.1.4.4 Double Tube Sheet 258
7.1.5 Nozzle 258
7.1.6 Flanges 259
7.1.7 Saddle Support / Lifting Lug 259
7.2 Fabrication 259
7.2.1 Various Steps for Fabrication 259
7.2.2 Using Automatic Machine 260
7.2.3 Manufacturing Tolerances 261
7.2.4 Fabrication Precaution for Special Items 261
7.2.5 Final Transportation / Shipment 262
7.3 Inspection and Testing 262
7.3.1 Inspection 262
7.3.1.1 Fabrication Inspection 262
7.3.1.2 Authorized Inspector 263
7.3.2 Testing 263
7.3.2.1 Nondestructive Testing 263
7.3.2.2 Difference Between Hydrostatic/ Pneumatic Tests and the Leak test
265
7.4 Installation 265
7.4.1 Installation Stages 265
7.4.1.1 Prior Planning 265
7.4.1.2 Actual Installation at Site 266
7.4.1.3 Flanged Joint Installation 266
7.5 Operation of a Heat Exchanger 267
7.5.1 Precommissioning of a New Heat Exchanger 267
7.5.2 Common Instrumentation and Control System 267
7.5.3 Removing Condensate from Exchanger, When Steam Is Used 268
7.5.4 When Does an Exchanger Need to Be Shut Down? 268
7.6 Maintenance and Repairment 268
7.6.1 Periodic Maintenance of Heat Exchangers 269
7.6.2 General Steps Consideration During Design Stage 269
7.6.3 List of Special Tools for Maintenance 270
7.6.4 List the Steps in the Maintenance of a Heat Exchanger 270
7.6.5 Maintenance Record 270
7.6.6 Areas of an Exchanger Require In-service Inspection 271
7.6.7 Using Modern Software for Preventive Maintenance 271
7.6.8 Leaking Determination in an Operating Heat Exchanger 271
7.6.9 The Specific Detection Method for Leaky Tubes and Joints 272
7.6.10 Plug and Replace Method for Leaky Tubes 272
7.6.11 Precaution for Unbolting Flange Connection 273
7.6.12 Precaution for Removing a Tube Bundle 273
7.6.13 General Cleaning Methods 273
7.6.13.1 Chemical Cleaning 274
7.6.13.2 Mechanical Cleaning 274
7.6.14 Various Ways of Cleaning the Inside / Outside of the Tube 274
7.6.15 Back Flushing 275
8 Comparison Between ASME Code and TEMA Standard 276
8.1 ASME Code 276
8.2 TEMA Standards 277
8.2.1 TEMA List of Content 278
8.2.1.1 TEMA Classifications of Heat Exchangers 278
8.2.1.2 TEMA Exchanger Nomenclature 279
8.2.1.3 Advantages of TEMA Heat Exchangers 279
8.3 Main Difference Between TEMA and ASME 280
8.4 Conclusion 281
9 Brief Description of TEMA Standard 282
9.1 Nomenclature 282
9.2 Fabrication Tolerances 282
9.3 General Fabrication and Performance Information 283
9.4 Installation, Operation, and Maintenance 283
9.5 Mechanical Standards TEMA Class RCB Heat Exchangers 285
9.6 Flow-induced Vibration 288
9.7 Thermal Relations 292
9.8 Physical Properties of Fluids 292
9.9 General Information 292
9.10 Recommended Good Practice-RGP 292
References 296
Index 297
About This Book xv
The Audience / Reader xvii
Global Computer Software for Thermal Design xviii
1 A Brief Overview 1
1.1 Short Summary for Each Chapter 1
1.2 Shell and Tube Heat Exchangers 3
1.3 Step-by-step Thermal Design Methodology 4
1.4 Why Shell and Tube? 5
1.5 Scope of Shell and Tube 5
1.6 Shell and Tube Heat Exchanger Components / Definition 6
1.7 Fouling 13
1.7.1 Effects of Fouling 14
1.7.2 Different Kinds of Fouling 14
1.7.3 Variables That Fouling Depends on 18
1.7.4 Fouling Influence in Heat Transfer 18
1.8 Thermodynamic Analysis of a Heat Exchanger 18
1.8.1 First Law of Thermodynamics Summary 18
1.8.2 Second Law of Thermodynamics Summary 19
1.8.3 Energy Conservation for a Heat Exchanger 19
2 Required Data for Starting Thermal Design 21
2.1 Process Data Sheet 21
2.2 Contract and Project Specifications 24
3 Practical Input Data for Thermal Design (Using Software) 25
3.1 Calculation Modes 25
3.2 Process Data for Hot / Cold Side 25
3.3 Physical Properties for Hot / Cold Side 26
3.4 Fouling Resistance Group 27
3.4.1 Sample of Fouling Resistance Data 27
3.5 Tubular Exchanger Manufacturers Association TYPE 28
3.5.1 Tubular Exchanger Manufacturers Association's Three Letters 28
3.5.2 Front Head Type 28
3.5.2.1 Type-A: Bolted Channel and Removable Cover 28
3.5.2.2 Type-B: Bonnet Type 30
3.5.2.3 Type-C: Channel Integral with Tube Sheet and Removable Bundle 30
3.5.2.4 Type-N: Channel Integral with Tube Sheet and Nonremovable Bundle 30
3.5.2.5 Type-D: High-pressure Enclosure 31
3.5.3 Selection Criteria for Front-head TEMA Type 31
3.5.4 Shell Type 32
3.5.4.1 Type-E: Single Pass Shell Type 32
3.5.4.2 Type-F: Two Pass Shell Type 33
3.5.4.3 Type-J: Divided Flow Shell Type 33
3.5.4.4 Type-G: Split Flow Shell Type 34
3.5.4.5 Type-H: Double Split Flow Shell Type 35
3.5.4.6 Type-X: Cross-flow Shell Type 35
3.5.4.7 Type-K: Kettle Type 36
3.5.5 Rear Head Type 37
3.5.5.1 Fixed Tube Sheet (TEMA Type-L, -M, and -N) 37
3.5.5.2 Type-U: U-tube 39
3.5.5.3 Floating Head Types (TEMA Type-S, -T, -W, and -P) 40
3.5.6 Selection Criteria for Rear Head TEMA Type 43
3.5.6.1 The Way to Determine the Fixed Tube Sheet Model 43
3.5.6.2 The Way to Determine the U-tube Type 44
3.5.6.3 The Ways to Determine the Floating Head Type 44
3.5.7 Possible TEMA Type Configuration 44
3.5.8 Common TEMA Type Heat Exchangers 44
3.5.8.1 Fixed Tube Sheet 44
3.5.8.2 Removable Bundle, U-tube 46
3.5.8.3 Removable Bundle 48
3.6 TEMA Class 50
3.7 Shell Inside Diameter 51
3.8 Exchanger Orientation 52
3.9 Hot / Cold Fluid Placement 53
3.9.1 General Items 53
3.9.2 Condensers 54
3.9.3 Reboilers 54
3.10 Examples of TEMA Type Selection 57
3.11 Heat Load and Effective Mean Temperature Difference 58
3.11.1 Heat Transfer Rate 58
3.11.2 Heat Release Curve 59
3.12 Number of Shells in Series and Parallel 61
3.12.1 Temperature Cross 61
3.12.2 Two Methods 62
3.12.3 Results and Conclusion 63
3.12.4 Stacking Shells in Series 63
3.12.5 Number of Shells in Parallel 65
3.13 Tube Type 65
3.13.1 Plain Tubes 65
3.13.2 Finned Tubes 65
3.13.2.1 Longitudinal Finned Tubes 65
3.14 Tube OD 66
3.14.1 TEMA Data 66
3.14.2 Tube Average Wall Thickness 67
3.14.3 Tube Pitch 67
3.15 Tube Pattern 67
3.16 Tube Length, Total, and Effective 69
3.16.1 Total Tube Length 69
3.16.2 Effective Tube Length 69
3.16.3 TEMA Recommendation 69
3.16.4 Refinery and Petrochemical Recommendation 69
3.16.5 Example of Heat Exchanger Price 70
3.17 Tube Pass 70
3.17.1 Number of Tube Passes 70
3.18 Material of Construction 71
3.18.1 Materials Normally Used 72
3.18.2 Factors That Used in Selecting Material 73
3.18.3 Important Precautions in Choosing Tube Materials 73
3.19 Tube Sheet 74
3.19.1 Tube Sheet Layout 74
3.19.2 Tube-pass Partition Plate 75
3.19.3 Basic Groups 75
3.19.3.1 Quadrant Layout 75
3.19.3.2 Ribbon Layout 76
3.19.3.3 Mixed or H-banded Layout 76
3.19.4 Pass-lane Width 76
3.20 Baffle Type 77
3.20.1 Single Segmental 78
3.20.2 No Tube in Windows (NTIW) 78
3.20.3 Double Segmental 78
3.20.4 Rod Baffle 79
3.20.5 Old Baffle Types 79
3.20.5.1 Triple Segmental 79
3.20.5.2 Orifice Baffle 80
3.20.5.3 Disk and Doughnut Baffle 80
3.21 Baffle Cut Percent 81
3.21.1 Optimum Data 81
3.21.2 Baffle Cut Orientation 82
3.21.2.1 Vertical 82
3.21.2.2 Horizontal 82
3.22 Baffle Spacing 83
3.22.1 Baffle Spacing - Center to Center 83
3.22.2 Baffle Spacing - Inlet / Outlet 83
3.22.3 Number of Baffles 84
3.22.4 Number of Baffle Spacing / Cross-passes 85
3.22.5 Support Plates per Baffle Space 85
3.22.6 U-bend Support Plate 85
3.23 Flow Fraction in Shell-side 85
3.24 Clearances and Shell-side Leakages 87
3.24.1 Clearances 87
3.24.2 Seal Strip Pairs 87
3.24.3 Seal Rods 88
3.24.4 Tie Rods 88
3.25 Nozzle Data 89
3.25.1 Shell-side Nozzle Data 89
3.25.1.1 Number of Nozzles 89
3.25.1.2 Nozzle Type and Location 90
3.25.2 Tube-side Nozzle Data 90
3.25.2.1 Number of Nozzles 90
3.25.2.2 Nozzle Type and Location 90
3.26 Impingement Plate 90
3.26.1 TEMA Recommendation 91
3.26.1.1 Shell-side Inlet Nozzle 91
3.26.1.2 Tube-side Inlet Nozzle 91
3.26.1.3 Gaskets 91
3.26.1.4 Vent and Drain Connection 92
3.26.1.5 Insulation 92
3.26.1.6 Supporting 92
3.27 Reboilers 92
3.27.1 Reboiler Type Selection Flow Chart 92
3.27.2 Vertical Thermosiphon Reboiler 93
3.27.3 Horizontal Thermosiphon Reboiler 95
3.27.4 Kettle-type Reboiler 96
3.27.5 Internal Reboilers 97
3.27.6 Pump-through Reboilers 97
3.28 Vibration of Tubes 98
3.28.1 Introduction 98
3.28.2 Important Recommendation 98
3.28.3 Flow-induced Vibration 99
3.28.4 Region Consideration 99
3.28.5 Damaging Effect of Vibration on Tube-side 100
3.28.6 Tube Natural Frequency 102
3.28.7 Phenomena of Tube Vibrations 102
3.28.8 Prediction of Vibration 104
3.28.9 Final Result 104
3.29 Emerging New Technology 104
3.29.1 Cryogenic Heat Exchanger 105
3.29.1.1 Coiled Tube Heat Exchanger 106
3.29.1.2 Cryogenic Heat Exchanger Insulation 106
3.29.2 Graphite Heat Exchanger 107
3.29.3 Glass Heat Exchanger 108
3.29.4 Teflon Heat Exchanger 109
3.29.5 EM-baffle-expanded Metal Baffles Type 111
3.29.5.1 Comparison Between a Conventional Baffle / EM Baffle 112
3.29.6 Twisted Tube Type 113
3.29.7 Helical Baffles Type 115
3.30 Basic Principles Path of Thermal Design in Computer Software 117
3.30.1 Using Computer Software 117
3.30.2 History of Calculation Methods 117
3.30.3 Different Steps in Thermal Design by Software 118
4 Features of an Optimal Design for a Heat Exchanger 122
4.1 Introduction: Result Output Data (of Any Computer Program) 122
4.2 Overdesign Percent 123
4.3 Calculated Pressure Drop 123
4.4 Flow Velocity / Rho-V 2 Analysis 123
4.5 Shell-side Flow Distribution 124
4.6 Baffle Spacing Center to Center 125
4.7 Effective Mean Temperature Difference 125
4.8 Shell and Tube Heat Transfer Coefficients 125
4.9 Two-phase Flow Regimes 126
4.9.1 Condensing Flow Regime 126
4.9.2 Vaporization Flow Regime 126
4.10 Vibration Analysis 127
4.11 Kettle-type Output Data 127
5 Optimization Logic 128
5.1 The Factors That Influence the Capital Cost of an Exchanger 128
5.2 Step-by-step Optimization Method 130
5.2.1 How to Control General Item 131
5.2.2 How to Control Tube-side Pressure Drop 132
5.2.3 How to Control Shell-side Pressure Drop 133
5.2.4 How to Control Tube-side Velocity / Heat Transfer Parameters 135
5.2.5 How to Control Shell-side Velocity / Heat Transfer Parameters 135
5.2.6 How to Control and Remove Vibration Problem 136
6 Practical Thermal Design for Real Example Cases 138
6.1 E-001: Water Cooler- 1 140
6.1.1 Isomer Unit - Refinery Complex 140
6.2 E-002: Water Cooler- 2 144
6.2.1 NHT Unit - Refinery Complex 144
6.3 E-003: Gas Water Cooler- 3 148
6.3.1 Methanol Plant 148
6.4 E-004: Lube Oil Water Cooler- 4 155
6.4.1 NHT Unit - Aromatic Complex 155
6.5 E-005: No Phase Change- 1 160
6.5.1 CCR Unit - Condensate Refinery 160
6.6 E-006: No Phase Change- 2 165
6.6.1 CDU Unit - Refinery Complex 165
6.7 E-007: Boiler Feed Water Heater - No Phase Change- 3 169
6.7.1 Gas Reformer Unit - Methanol Plant 169
6.8 E-008: Feed and Effluent Heat Exchanger- 1 175
6.8.1 Aromatic Plant 175
6.9 E-009: Feed and Effluent Heat Exchanger- 2 181
6.9.1 Aromatic Plant 181
6.10 E-010: Condenser- 1 186
6.10.1 Olefin Plant 186
6.11 E-011: Condenser- 2 191
6.11.1 NHT Plant - Refinery Complex 191
6.12 E-012: Condenser- 3 197
6.12.1 Aromatic Plant 197
6.13 E-013: Reactor Effluent Condenser- 4 204
6.13.1 NHT Unit - Refinery 204
6.14 E-014: Kettle Type-1 - C3 Refrigerator 209
6.14.1 C2 Recovery Gas Plant 209
6.15 E-015: Kettle Type-2 - Steam Boiler 214
6.15.1 CDU Unit - Refinery Complex 214
6.16 E-016: Kettle Type-3 - Reboiler 218
6.16.1 Amine Unit - Refinery Complex 218
6.17 E-017: Horizontal Thermosiphon Reboiler- 1 223
6.17.1 Refinery Complex 223
6.18 E-018: Horizontal Thermosiphon Reboiler- 2 229
6.18.1 Refinery Complex 229
6.19 E-019: Vertical Thermosiphon Reboiler- 1 238
6.19.1 Refinery Complex 238
6.20 E-020: Vertical Thermosiphon Reboiler- 2 246
6.20.1 Refinery Complex 246
7 Brief Description of Activities After Thermal Design 254
7.1 Mechanical Design 255
7.1.1 General Guidelines for Mechanical Design 255
7.1.2 Thickness Design for All Pressure Parts 256
7.1.3 Finalization of Tube-sheet Layout 256
7.1.4 Tube Sheet 257
7.1.4.1 Tube Sheets Used in Different Kinds of Exchangers 257
7.1.4.2 Removable Tube Sheet Types 257
7.1.4.3 Tube Sheet Material and Cladding 258
7.1.4.4 Double Tube Sheet 258
7.1.5 Nozzle 258
7.1.6 Flanges 259
7.1.7 Saddle Support / Lifting Lug 259
7.2 Fabrication 259
7.2.1 Various Steps for Fabrication 259
7.2.2 Using Automatic Machine 260
7.2.3 Manufacturing Tolerances 261
7.2.4 Fabrication Precaution for Special Items 261
7.2.5 Final Transportation / Shipment 262
7.3 Inspection and Testing 262
7.3.1 Inspection 262
7.3.1.1 Fabrication Inspection 262
7.3.1.2 Authorized Inspector 263
7.3.2 Testing 263
7.3.2.1 Nondestructive Testing 263
7.3.2.2 Difference Between Hydrostatic/ Pneumatic Tests and the Leak test
265
7.4 Installation 265
7.4.1 Installation Stages 265
7.4.1.1 Prior Planning 265
7.4.1.2 Actual Installation at Site 266
7.4.1.3 Flanged Joint Installation 266
7.5 Operation of a Heat Exchanger 267
7.5.1 Precommissioning of a New Heat Exchanger 267
7.5.2 Common Instrumentation and Control System 267
7.5.3 Removing Condensate from Exchanger, When Steam Is Used 268
7.5.4 When Does an Exchanger Need to Be Shut Down? 268
7.6 Maintenance and Repairment 268
7.6.1 Periodic Maintenance of Heat Exchangers 269
7.6.2 General Steps Consideration During Design Stage 269
7.6.3 List of Special Tools for Maintenance 270
7.6.4 List the Steps in the Maintenance of a Heat Exchanger 270
7.6.5 Maintenance Record 270
7.6.6 Areas of an Exchanger Require In-service Inspection 271
7.6.7 Using Modern Software for Preventive Maintenance 271
7.6.8 Leaking Determination in an Operating Heat Exchanger 271
7.6.9 The Specific Detection Method for Leaky Tubes and Joints 272
7.6.10 Plug and Replace Method for Leaky Tubes 272
7.6.11 Precaution for Unbolting Flange Connection 273
7.6.12 Precaution for Removing a Tube Bundle 273
7.6.13 General Cleaning Methods 273
7.6.13.1 Chemical Cleaning 274
7.6.13.2 Mechanical Cleaning 274
7.6.14 Various Ways of Cleaning the Inside / Outside of the Tube 274
7.6.15 Back Flushing 275
8 Comparison Between ASME Code and TEMA Standard 276
8.1 ASME Code 276
8.2 TEMA Standards 277
8.2.1 TEMA List of Content 278
8.2.1.1 TEMA Classifications of Heat Exchangers 278
8.2.1.2 TEMA Exchanger Nomenclature 279
8.2.1.3 Advantages of TEMA Heat Exchangers 279
8.3 Main Difference Between TEMA and ASME 280
8.4 Conclusion 281
9 Brief Description of TEMA Standard 282
9.1 Nomenclature 282
9.2 Fabrication Tolerances 282
9.3 General Fabrication and Performance Information 283
9.4 Installation, Operation, and Maintenance 283
9.5 Mechanical Standards TEMA Class RCB Heat Exchangers 285
9.6 Flow-induced Vibration 288
9.7 Thermal Relations 292
9.8 Physical Properties of Fluids 292
9.9 General Information 292
9.10 Recommended Good Practice-RGP 292
References 296
Index 297
Preface xiii
About This Book xv
The Audience / Reader xvii
Global Computer Software for Thermal Design xviii
1 A Brief Overview 1
1.1 Short Summary for Each Chapter 1
1.2 Shell and Tube Heat Exchangers 3
1.3 Step-by-step Thermal Design Methodology 4
1.4 Why Shell and Tube? 5
1.5 Scope of Shell and Tube 5
1.6 Shell and Tube Heat Exchanger Components / Definition 6
1.7 Fouling 13
1.7.1 Effects of Fouling 14
1.7.2 Different Kinds of Fouling 14
1.7.3 Variables That Fouling Depends on 18
1.7.4 Fouling Influence in Heat Transfer 18
1.8 Thermodynamic Analysis of a Heat Exchanger 18
1.8.1 First Law of Thermodynamics Summary 18
1.8.2 Second Law of Thermodynamics Summary 19
1.8.3 Energy Conservation for a Heat Exchanger 19
2 Required Data for Starting Thermal Design 21
2.1 Process Data Sheet 21
2.2 Contract and Project Specifications 24
3 Practical Input Data for Thermal Design (Using Software) 25
3.1 Calculation Modes 25
3.2 Process Data for Hot / Cold Side 25
3.3 Physical Properties for Hot / Cold Side 26
3.4 Fouling Resistance Group 27
3.4.1 Sample of Fouling Resistance Data 27
3.5 Tubular Exchanger Manufacturers Association TYPE 28
3.5.1 Tubular Exchanger Manufacturers Association's Three Letters 28
3.5.2 Front Head Type 28
3.5.2.1 Type-A: Bolted Channel and Removable Cover 28
3.5.2.2 Type-B: Bonnet Type 30
3.5.2.3 Type-C: Channel Integral with Tube Sheet and Removable Bundle 30
3.5.2.4 Type-N: Channel Integral with Tube Sheet and Nonremovable Bundle 30
3.5.2.5 Type-D: High-pressure Enclosure 31
3.5.3 Selection Criteria for Front-head TEMA Type 31
3.5.4 Shell Type 32
3.5.4.1 Type-E: Single Pass Shell Type 32
3.5.4.2 Type-F: Two Pass Shell Type 33
3.5.4.3 Type-J: Divided Flow Shell Type 33
3.5.4.4 Type-G: Split Flow Shell Type 34
3.5.4.5 Type-H: Double Split Flow Shell Type 35
3.5.4.6 Type-X: Cross-flow Shell Type 35
3.5.4.7 Type-K: Kettle Type 36
3.5.5 Rear Head Type 37
3.5.5.1 Fixed Tube Sheet (TEMA Type-L, -M, and -N) 37
3.5.5.2 Type-U: U-tube 39
3.5.5.3 Floating Head Types (TEMA Type-S, -T, -W, and -P) 40
3.5.6 Selection Criteria for Rear Head TEMA Type 43
3.5.6.1 The Way to Determine the Fixed Tube Sheet Model 43
3.5.6.2 The Way to Determine the U-tube Type 44
3.5.6.3 The Ways to Determine the Floating Head Type 44
3.5.7 Possible TEMA Type Configuration 44
3.5.8 Common TEMA Type Heat Exchangers 44
3.5.8.1 Fixed Tube Sheet 44
3.5.8.2 Removable Bundle, U-tube 46
3.5.8.3 Removable Bundle 48
3.6 TEMA Class 50
3.7 Shell Inside Diameter 51
3.8 Exchanger Orientation 52
3.9 Hot / Cold Fluid Placement 53
3.9.1 General Items 53
3.9.2 Condensers 54
3.9.3 Reboilers 54
3.10 Examples of TEMA Type Selection 57
3.11 Heat Load and Effective Mean Temperature Difference 58
3.11.1 Heat Transfer Rate 58
3.11.2 Heat Release Curve 59
3.12 Number of Shells in Series and Parallel 61
3.12.1 Temperature Cross 61
3.12.2 Two Methods 62
3.12.3 Results and Conclusion 63
3.12.4 Stacking Shells in Series 63
3.12.5 Number of Shells in Parallel 65
3.13 Tube Type 65
3.13.1 Plain Tubes 65
3.13.2 Finned Tubes 65
3.13.2.1 Longitudinal Finned Tubes 65
3.14 Tube OD 66
3.14.1 TEMA Data 66
3.14.2 Tube Average Wall Thickness 67
3.14.3 Tube Pitch 67
3.15 Tube Pattern 67
3.16 Tube Length, Total, and Effective 69
3.16.1 Total Tube Length 69
3.16.2 Effective Tube Length 69
3.16.3 TEMA Recommendation 69
3.16.4 Refinery and Petrochemical Recommendation 69
3.16.5 Example of Heat Exchanger Price 70
3.17 Tube Pass 70
3.17.1 Number of Tube Passes 70
3.18 Material of Construction 71
3.18.1 Materials Normally Used 72
3.18.2 Factors That Used in Selecting Material 73
3.18.3 Important Precautions in Choosing Tube Materials 73
3.19 Tube Sheet 74
3.19.1 Tube Sheet Layout 74
3.19.2 Tube-pass Partition Plate 75
3.19.3 Basic Groups 75
3.19.3.1 Quadrant Layout 75
3.19.3.2 Ribbon Layout 76
3.19.3.3 Mixed or H-banded Layout 76
3.19.4 Pass-lane Width 76
3.20 Baffle Type 77
3.20.1 Single Segmental 78
3.20.2 No Tube in Windows (NTIW) 78
3.20.3 Double Segmental 78
3.20.4 Rod Baffle 79
3.20.5 Old Baffle Types 79
3.20.5.1 Triple Segmental 79
3.20.5.2 Orifice Baffle 80
3.20.5.3 Disk and Doughnut Baffle 80
3.21 Baffle Cut Percent 81
3.21.1 Optimum Data 81
3.21.2 Baffle Cut Orientation 82
3.21.2.1 Vertical 82
3.21.2.2 Horizontal 82
3.22 Baffle Spacing 83
3.22.1 Baffle Spacing - Center to Center 83
3.22.2 Baffle Spacing - Inlet / Outlet 83
3.22.3 Number of Baffles 84
3.22.4 Number of Baffle Spacing / Cross-passes 85
3.22.5 Support Plates per Baffle Space 85
3.22.6 U-bend Support Plate 85
3.23 Flow Fraction in Shell-side 85
3.24 Clearances and Shell-side Leakages 87
3.24.1 Clearances 87
3.24.2 Seal Strip Pairs 87
3.24.3 Seal Rods 88
3.24.4 Tie Rods 88
3.25 Nozzle Data 89
3.25.1 Shell-side Nozzle Data 89
3.25.1.1 Number of Nozzles 89
3.25.1.2 Nozzle Type and Location 90
3.25.2 Tube-side Nozzle Data 90
3.25.2.1 Number of Nozzles 90
3.25.2.2 Nozzle Type and Location 90
3.26 Impingement Plate 90
3.26.1 TEMA Recommendation 91
3.26.1.1 Shell-side Inlet Nozzle 91
3.26.1.2 Tube-side Inlet Nozzle 91
3.26.1.3 Gaskets 91
3.26.1.4 Vent and Drain Connection 92
3.26.1.5 Insulation 92
3.26.1.6 Supporting 92
3.27 Reboilers 92
3.27.1 Reboiler Type Selection Flow Chart 92
3.27.2 Vertical Thermosiphon Reboiler 93
3.27.3 Horizontal Thermosiphon Reboiler 95
3.27.4 Kettle-type Reboiler 96
3.27.5 Internal Reboilers 97
3.27.6 Pump-through Reboilers 97
3.28 Vibration of Tubes 98
3.28.1 Introduction 98
3.28.2 Important Recommendation 98
3.28.3 Flow-induced Vibration 99
3.28.4 Region Consideration 99
3.28.5 Damaging Effect of Vibration on Tube-side 100
3.28.6 Tube Natural Frequency 102
3.28.7 Phenomena of Tube Vibrations 102
3.28.8 Prediction of Vibration 104
3.28.9 Final Result 104
3.29 Emerging New Technology 104
3.29.1 Cryogenic Heat Exchanger 105
3.29.1.1 Coiled Tube Heat Exchanger 106
3.29.1.2 Cryogenic Heat Exchanger Insulation 106
3.29.2 Graphite Heat Exchanger 107
3.29.3 Glass Heat Exchanger 108
3.29.4 Teflon Heat Exchanger 109
3.29.5 EM-baffle-expanded Metal Baffles Type 111
3.29.5.1 Comparison Between a Conventional Baffle / EM Baffle 112
3.29.6 Twisted Tube Type 113
3.29.7 Helical Baffles Type 115
3.30 Basic Principles Path of Thermal Design in Computer Software 117
3.30.1 Using Computer Software 117
3.30.2 History of Calculation Methods 117
3.30.3 Different Steps in Thermal Design by Software 118
4 Features of an Optimal Design for a Heat Exchanger 122
4.1 Introduction: Result Output Data (of Any Computer Program) 122
4.2 Overdesign Percent 123
4.3 Calculated Pressure Drop 123
4.4 Flow Velocity / Rho-V 2 Analysis 123
4.5 Shell-side Flow Distribution 124
4.6 Baffle Spacing Center to Center 125
4.7 Effective Mean Temperature Difference 125
4.8 Shell and Tube Heat Transfer Coefficients 125
4.9 Two-phase Flow Regimes 126
4.9.1 Condensing Flow Regime 126
4.9.2 Vaporization Flow Regime 126
4.10 Vibration Analysis 127
4.11 Kettle-type Output Data 127
5 Optimization Logic 128
5.1 The Factors That Influence the Capital Cost of an Exchanger 128
5.2 Step-by-step Optimization Method 130
5.2.1 How to Control General Item 131
5.2.2 How to Control Tube-side Pressure Drop 132
5.2.3 How to Control Shell-side Pressure Drop 133
5.2.4 How to Control Tube-side Velocity / Heat Transfer Parameters 135
5.2.5 How to Control Shell-side Velocity / Heat Transfer Parameters 135
5.2.6 How to Control and Remove Vibration Problem 136
6 Practical Thermal Design for Real Example Cases 138
6.1 E-001: Water Cooler- 1 140
6.1.1 Isomer Unit - Refinery Complex 140
6.2 E-002: Water Cooler- 2 144
6.2.1 NHT Unit - Refinery Complex 144
6.3 E-003: Gas Water Cooler- 3 148
6.3.1 Methanol Plant 148
6.4 E-004: Lube Oil Water Cooler- 4 155
6.4.1 NHT Unit - Aromatic Complex 155
6.5 E-005: No Phase Change- 1 160
6.5.1 CCR Unit - Condensate Refinery 160
6.6 E-006: No Phase Change- 2 165
6.6.1 CDU Unit - Refinery Complex 165
6.7 E-007: Boiler Feed Water Heater - No Phase Change- 3 169
6.7.1 Gas Reformer Unit - Methanol Plant 169
6.8 E-008: Feed and Effluent Heat Exchanger- 1 175
6.8.1 Aromatic Plant 175
6.9 E-009: Feed and Effluent Heat Exchanger- 2 181
6.9.1 Aromatic Plant 181
6.10 E-010: Condenser- 1 186
6.10.1 Olefin Plant 186
6.11 E-011: Condenser- 2 191
6.11.1 NHT Plant - Refinery Complex 191
6.12 E-012: Condenser- 3 197
6.12.1 Aromatic Plant 197
6.13 E-013: Reactor Effluent Condenser- 4 204
6.13.1 NHT Unit - Refinery 204
6.14 E-014: Kettle Type-1 - C3 Refrigerator 209
6.14.1 C2 Recovery Gas Plant 209
6.15 E-015: Kettle Type-2 - Steam Boiler 214
6.15.1 CDU Unit - Refinery Complex 214
6.16 E-016: Kettle Type-3 - Reboiler 218
6.16.1 Amine Unit - Refinery Complex 218
6.17 E-017: Horizontal Thermosiphon Reboiler- 1 223
6.17.1 Refinery Complex 223
6.18 E-018: Horizontal Thermosiphon Reboiler- 2 229
6.18.1 Refinery Complex 229
6.19 E-019: Vertical Thermosiphon Reboiler- 1 238
6.19.1 Refinery Complex 238
6.20 E-020: Vertical Thermosiphon Reboiler- 2 246
6.20.1 Refinery Complex 246
7 Brief Description of Activities After Thermal Design 254
7.1 Mechanical Design 255
7.1.1 General Guidelines for Mechanical Design 255
7.1.2 Thickness Design for All Pressure Parts 256
7.1.3 Finalization of Tube-sheet Layout 256
7.1.4 Tube Sheet 257
7.1.4.1 Tube Sheets Used in Different Kinds of Exchangers 257
7.1.4.2 Removable Tube Sheet Types 257
7.1.4.3 Tube Sheet Material and Cladding 258
7.1.4.4 Double Tube Sheet 258
7.1.5 Nozzle 258
7.1.6 Flanges 259
7.1.7 Saddle Support / Lifting Lug 259
7.2 Fabrication 259
7.2.1 Various Steps for Fabrication 259
7.2.2 Using Automatic Machine 260
7.2.3 Manufacturing Tolerances 261
7.2.4 Fabrication Precaution for Special Items 261
7.2.5 Final Transportation / Shipment 262
7.3 Inspection and Testing 262
7.3.1 Inspection 262
7.3.1.1 Fabrication Inspection 262
7.3.1.2 Authorized Inspector 263
7.3.2 Testing 263
7.3.2.1 Nondestructive Testing 263
7.3.2.2 Difference Between Hydrostatic/ Pneumatic Tests and the Leak test
265
7.4 Installation 265
7.4.1 Installation Stages 265
7.4.1.1 Prior Planning 265
7.4.1.2 Actual Installation at Site 266
7.4.1.3 Flanged Joint Installation 266
7.5 Operation of a Heat Exchanger 267
7.5.1 Precommissioning of a New Heat Exchanger 267
7.5.2 Common Instrumentation and Control System 267
7.5.3 Removing Condensate from Exchanger, When Steam Is Used 268
7.5.4 When Does an Exchanger Need to Be Shut Down? 268
7.6 Maintenance and Repairment 268
7.6.1 Periodic Maintenance of Heat Exchangers 269
7.6.2 General Steps Consideration During Design Stage 269
7.6.3 List of Special Tools for Maintenance 270
7.6.4 List the Steps in the Maintenance of a Heat Exchanger 270
7.6.5 Maintenance Record 270
7.6.6 Areas of an Exchanger Require In-service Inspection 271
7.6.7 Using Modern Software for Preventive Maintenance 271
7.6.8 Leaking Determination in an Operating Heat Exchanger 271
7.6.9 The Specific Detection Method for Leaky Tubes and Joints 272
7.6.10 Plug and Replace Method for Leaky Tubes 272
7.6.11 Precaution for Unbolting Flange Connection 273
7.6.12 Precaution for Removing a Tube Bundle 273
7.6.13 General Cleaning Methods 273
7.6.13.1 Chemical Cleaning 274
7.6.13.2 Mechanical Cleaning 274
7.6.14 Various Ways of Cleaning the Inside / Outside of the Tube 274
7.6.15 Back Flushing 275
8 Comparison Between ASME Code and TEMA Standard 276
8.1 ASME Code 276
8.2 TEMA Standards 277
8.2.1 TEMA List of Content 278
8.2.1.1 TEMA Classifications of Heat Exchangers 278
8.2.1.2 TEMA Exchanger Nomenclature 279
8.2.1.3 Advantages of TEMA Heat Exchangers 279
8.3 Main Difference Between TEMA and ASME 280
8.4 Conclusion 281
9 Brief Description of TEMA Standard 282
9.1 Nomenclature 282
9.2 Fabrication Tolerances 282
9.3 General Fabrication and Performance Information 283
9.4 Installation, Operation, and Maintenance 283
9.5 Mechanical Standards TEMA Class RCB Heat Exchangers 285
9.6 Flow-induced Vibration 288
9.7 Thermal Relations 292
9.8 Physical Properties of Fluids 292
9.9 General Information 292
9.10 Recommended Good Practice-RGP 292
References 296
Index 297
About This Book xv
The Audience / Reader xvii
Global Computer Software for Thermal Design xviii
1 A Brief Overview 1
1.1 Short Summary for Each Chapter 1
1.2 Shell and Tube Heat Exchangers 3
1.3 Step-by-step Thermal Design Methodology 4
1.4 Why Shell and Tube? 5
1.5 Scope of Shell and Tube 5
1.6 Shell and Tube Heat Exchanger Components / Definition 6
1.7 Fouling 13
1.7.1 Effects of Fouling 14
1.7.2 Different Kinds of Fouling 14
1.7.3 Variables That Fouling Depends on 18
1.7.4 Fouling Influence in Heat Transfer 18
1.8 Thermodynamic Analysis of a Heat Exchanger 18
1.8.1 First Law of Thermodynamics Summary 18
1.8.2 Second Law of Thermodynamics Summary 19
1.8.3 Energy Conservation for a Heat Exchanger 19
2 Required Data for Starting Thermal Design 21
2.1 Process Data Sheet 21
2.2 Contract and Project Specifications 24
3 Practical Input Data for Thermal Design (Using Software) 25
3.1 Calculation Modes 25
3.2 Process Data for Hot / Cold Side 25
3.3 Physical Properties for Hot / Cold Side 26
3.4 Fouling Resistance Group 27
3.4.1 Sample of Fouling Resistance Data 27
3.5 Tubular Exchanger Manufacturers Association TYPE 28
3.5.1 Tubular Exchanger Manufacturers Association's Three Letters 28
3.5.2 Front Head Type 28
3.5.2.1 Type-A: Bolted Channel and Removable Cover 28
3.5.2.2 Type-B: Bonnet Type 30
3.5.2.3 Type-C: Channel Integral with Tube Sheet and Removable Bundle 30
3.5.2.4 Type-N: Channel Integral with Tube Sheet and Nonremovable Bundle 30
3.5.2.5 Type-D: High-pressure Enclosure 31
3.5.3 Selection Criteria for Front-head TEMA Type 31
3.5.4 Shell Type 32
3.5.4.1 Type-E: Single Pass Shell Type 32
3.5.4.2 Type-F: Two Pass Shell Type 33
3.5.4.3 Type-J: Divided Flow Shell Type 33
3.5.4.4 Type-G: Split Flow Shell Type 34
3.5.4.5 Type-H: Double Split Flow Shell Type 35
3.5.4.6 Type-X: Cross-flow Shell Type 35
3.5.4.7 Type-K: Kettle Type 36
3.5.5 Rear Head Type 37
3.5.5.1 Fixed Tube Sheet (TEMA Type-L, -M, and -N) 37
3.5.5.2 Type-U: U-tube 39
3.5.5.3 Floating Head Types (TEMA Type-S, -T, -W, and -P) 40
3.5.6 Selection Criteria for Rear Head TEMA Type 43
3.5.6.1 The Way to Determine the Fixed Tube Sheet Model 43
3.5.6.2 The Way to Determine the U-tube Type 44
3.5.6.3 The Ways to Determine the Floating Head Type 44
3.5.7 Possible TEMA Type Configuration 44
3.5.8 Common TEMA Type Heat Exchangers 44
3.5.8.1 Fixed Tube Sheet 44
3.5.8.2 Removable Bundle, U-tube 46
3.5.8.3 Removable Bundle 48
3.6 TEMA Class 50
3.7 Shell Inside Diameter 51
3.8 Exchanger Orientation 52
3.9 Hot / Cold Fluid Placement 53
3.9.1 General Items 53
3.9.2 Condensers 54
3.9.3 Reboilers 54
3.10 Examples of TEMA Type Selection 57
3.11 Heat Load and Effective Mean Temperature Difference 58
3.11.1 Heat Transfer Rate 58
3.11.2 Heat Release Curve 59
3.12 Number of Shells in Series and Parallel 61
3.12.1 Temperature Cross 61
3.12.2 Two Methods 62
3.12.3 Results and Conclusion 63
3.12.4 Stacking Shells in Series 63
3.12.5 Number of Shells in Parallel 65
3.13 Tube Type 65
3.13.1 Plain Tubes 65
3.13.2 Finned Tubes 65
3.13.2.1 Longitudinal Finned Tubes 65
3.14 Tube OD 66
3.14.1 TEMA Data 66
3.14.2 Tube Average Wall Thickness 67
3.14.3 Tube Pitch 67
3.15 Tube Pattern 67
3.16 Tube Length, Total, and Effective 69
3.16.1 Total Tube Length 69
3.16.2 Effective Tube Length 69
3.16.3 TEMA Recommendation 69
3.16.4 Refinery and Petrochemical Recommendation 69
3.16.5 Example of Heat Exchanger Price 70
3.17 Tube Pass 70
3.17.1 Number of Tube Passes 70
3.18 Material of Construction 71
3.18.1 Materials Normally Used 72
3.18.2 Factors That Used in Selecting Material 73
3.18.3 Important Precautions in Choosing Tube Materials 73
3.19 Tube Sheet 74
3.19.1 Tube Sheet Layout 74
3.19.2 Tube-pass Partition Plate 75
3.19.3 Basic Groups 75
3.19.3.1 Quadrant Layout 75
3.19.3.2 Ribbon Layout 76
3.19.3.3 Mixed or H-banded Layout 76
3.19.4 Pass-lane Width 76
3.20 Baffle Type 77
3.20.1 Single Segmental 78
3.20.2 No Tube in Windows (NTIW) 78
3.20.3 Double Segmental 78
3.20.4 Rod Baffle 79
3.20.5 Old Baffle Types 79
3.20.5.1 Triple Segmental 79
3.20.5.2 Orifice Baffle 80
3.20.5.3 Disk and Doughnut Baffle 80
3.21 Baffle Cut Percent 81
3.21.1 Optimum Data 81
3.21.2 Baffle Cut Orientation 82
3.21.2.1 Vertical 82
3.21.2.2 Horizontal 82
3.22 Baffle Spacing 83
3.22.1 Baffle Spacing - Center to Center 83
3.22.2 Baffle Spacing - Inlet / Outlet 83
3.22.3 Number of Baffles 84
3.22.4 Number of Baffle Spacing / Cross-passes 85
3.22.5 Support Plates per Baffle Space 85
3.22.6 U-bend Support Plate 85
3.23 Flow Fraction in Shell-side 85
3.24 Clearances and Shell-side Leakages 87
3.24.1 Clearances 87
3.24.2 Seal Strip Pairs 87
3.24.3 Seal Rods 88
3.24.4 Tie Rods 88
3.25 Nozzle Data 89
3.25.1 Shell-side Nozzle Data 89
3.25.1.1 Number of Nozzles 89
3.25.1.2 Nozzle Type and Location 90
3.25.2 Tube-side Nozzle Data 90
3.25.2.1 Number of Nozzles 90
3.25.2.2 Nozzle Type and Location 90
3.26 Impingement Plate 90
3.26.1 TEMA Recommendation 91
3.26.1.1 Shell-side Inlet Nozzle 91
3.26.1.2 Tube-side Inlet Nozzle 91
3.26.1.3 Gaskets 91
3.26.1.4 Vent and Drain Connection 92
3.26.1.5 Insulation 92
3.26.1.6 Supporting 92
3.27 Reboilers 92
3.27.1 Reboiler Type Selection Flow Chart 92
3.27.2 Vertical Thermosiphon Reboiler 93
3.27.3 Horizontal Thermosiphon Reboiler 95
3.27.4 Kettle-type Reboiler 96
3.27.5 Internal Reboilers 97
3.27.6 Pump-through Reboilers 97
3.28 Vibration of Tubes 98
3.28.1 Introduction 98
3.28.2 Important Recommendation 98
3.28.3 Flow-induced Vibration 99
3.28.4 Region Consideration 99
3.28.5 Damaging Effect of Vibration on Tube-side 100
3.28.6 Tube Natural Frequency 102
3.28.7 Phenomena of Tube Vibrations 102
3.28.8 Prediction of Vibration 104
3.28.9 Final Result 104
3.29 Emerging New Technology 104
3.29.1 Cryogenic Heat Exchanger 105
3.29.1.1 Coiled Tube Heat Exchanger 106
3.29.1.2 Cryogenic Heat Exchanger Insulation 106
3.29.2 Graphite Heat Exchanger 107
3.29.3 Glass Heat Exchanger 108
3.29.4 Teflon Heat Exchanger 109
3.29.5 EM-baffle-expanded Metal Baffles Type 111
3.29.5.1 Comparison Between a Conventional Baffle / EM Baffle 112
3.29.6 Twisted Tube Type 113
3.29.7 Helical Baffles Type 115
3.30 Basic Principles Path of Thermal Design in Computer Software 117
3.30.1 Using Computer Software 117
3.30.2 History of Calculation Methods 117
3.30.3 Different Steps in Thermal Design by Software 118
4 Features of an Optimal Design for a Heat Exchanger 122
4.1 Introduction: Result Output Data (of Any Computer Program) 122
4.2 Overdesign Percent 123
4.3 Calculated Pressure Drop 123
4.4 Flow Velocity / Rho-V 2 Analysis 123
4.5 Shell-side Flow Distribution 124
4.6 Baffle Spacing Center to Center 125
4.7 Effective Mean Temperature Difference 125
4.8 Shell and Tube Heat Transfer Coefficients 125
4.9 Two-phase Flow Regimes 126
4.9.1 Condensing Flow Regime 126
4.9.2 Vaporization Flow Regime 126
4.10 Vibration Analysis 127
4.11 Kettle-type Output Data 127
5 Optimization Logic 128
5.1 The Factors That Influence the Capital Cost of an Exchanger 128
5.2 Step-by-step Optimization Method 130
5.2.1 How to Control General Item 131
5.2.2 How to Control Tube-side Pressure Drop 132
5.2.3 How to Control Shell-side Pressure Drop 133
5.2.4 How to Control Tube-side Velocity / Heat Transfer Parameters 135
5.2.5 How to Control Shell-side Velocity / Heat Transfer Parameters 135
5.2.6 How to Control and Remove Vibration Problem 136
6 Practical Thermal Design for Real Example Cases 138
6.1 E-001: Water Cooler- 1 140
6.1.1 Isomer Unit - Refinery Complex 140
6.2 E-002: Water Cooler- 2 144
6.2.1 NHT Unit - Refinery Complex 144
6.3 E-003: Gas Water Cooler- 3 148
6.3.1 Methanol Plant 148
6.4 E-004: Lube Oil Water Cooler- 4 155
6.4.1 NHT Unit - Aromatic Complex 155
6.5 E-005: No Phase Change- 1 160
6.5.1 CCR Unit - Condensate Refinery 160
6.6 E-006: No Phase Change- 2 165
6.6.1 CDU Unit - Refinery Complex 165
6.7 E-007: Boiler Feed Water Heater - No Phase Change- 3 169
6.7.1 Gas Reformer Unit - Methanol Plant 169
6.8 E-008: Feed and Effluent Heat Exchanger- 1 175
6.8.1 Aromatic Plant 175
6.9 E-009: Feed and Effluent Heat Exchanger- 2 181
6.9.1 Aromatic Plant 181
6.10 E-010: Condenser- 1 186
6.10.1 Olefin Plant 186
6.11 E-011: Condenser- 2 191
6.11.1 NHT Plant - Refinery Complex 191
6.12 E-012: Condenser- 3 197
6.12.1 Aromatic Plant 197
6.13 E-013: Reactor Effluent Condenser- 4 204
6.13.1 NHT Unit - Refinery 204
6.14 E-014: Kettle Type-1 - C3 Refrigerator 209
6.14.1 C2 Recovery Gas Plant 209
6.15 E-015: Kettle Type-2 - Steam Boiler 214
6.15.1 CDU Unit - Refinery Complex 214
6.16 E-016: Kettle Type-3 - Reboiler 218
6.16.1 Amine Unit - Refinery Complex 218
6.17 E-017: Horizontal Thermosiphon Reboiler- 1 223
6.17.1 Refinery Complex 223
6.18 E-018: Horizontal Thermosiphon Reboiler- 2 229
6.18.1 Refinery Complex 229
6.19 E-019: Vertical Thermosiphon Reboiler- 1 238
6.19.1 Refinery Complex 238
6.20 E-020: Vertical Thermosiphon Reboiler- 2 246
6.20.1 Refinery Complex 246
7 Brief Description of Activities After Thermal Design 254
7.1 Mechanical Design 255
7.1.1 General Guidelines for Mechanical Design 255
7.1.2 Thickness Design for All Pressure Parts 256
7.1.3 Finalization of Tube-sheet Layout 256
7.1.4 Tube Sheet 257
7.1.4.1 Tube Sheets Used in Different Kinds of Exchangers 257
7.1.4.2 Removable Tube Sheet Types 257
7.1.4.3 Tube Sheet Material and Cladding 258
7.1.4.4 Double Tube Sheet 258
7.1.5 Nozzle 258
7.1.6 Flanges 259
7.1.7 Saddle Support / Lifting Lug 259
7.2 Fabrication 259
7.2.1 Various Steps for Fabrication 259
7.2.2 Using Automatic Machine 260
7.2.3 Manufacturing Tolerances 261
7.2.4 Fabrication Precaution for Special Items 261
7.2.5 Final Transportation / Shipment 262
7.3 Inspection and Testing 262
7.3.1 Inspection 262
7.3.1.1 Fabrication Inspection 262
7.3.1.2 Authorized Inspector 263
7.3.2 Testing 263
7.3.2.1 Nondestructive Testing 263
7.3.2.2 Difference Between Hydrostatic/ Pneumatic Tests and the Leak test
265
7.4 Installation 265
7.4.1 Installation Stages 265
7.4.1.1 Prior Planning 265
7.4.1.2 Actual Installation at Site 266
7.4.1.3 Flanged Joint Installation 266
7.5 Operation of a Heat Exchanger 267
7.5.1 Precommissioning of a New Heat Exchanger 267
7.5.2 Common Instrumentation and Control System 267
7.5.3 Removing Condensate from Exchanger, When Steam Is Used 268
7.5.4 When Does an Exchanger Need to Be Shut Down? 268
7.6 Maintenance and Repairment 268
7.6.1 Periodic Maintenance of Heat Exchangers 269
7.6.2 General Steps Consideration During Design Stage 269
7.6.3 List of Special Tools for Maintenance 270
7.6.4 List the Steps in the Maintenance of a Heat Exchanger 270
7.6.5 Maintenance Record 270
7.6.6 Areas of an Exchanger Require In-service Inspection 271
7.6.7 Using Modern Software for Preventive Maintenance 271
7.6.8 Leaking Determination in an Operating Heat Exchanger 271
7.6.9 The Specific Detection Method for Leaky Tubes and Joints 272
7.6.10 Plug and Replace Method for Leaky Tubes 272
7.6.11 Precaution for Unbolting Flange Connection 273
7.6.12 Precaution for Removing a Tube Bundle 273
7.6.13 General Cleaning Methods 273
7.6.13.1 Chemical Cleaning 274
7.6.13.2 Mechanical Cleaning 274
7.6.14 Various Ways of Cleaning the Inside / Outside of the Tube 274
7.6.15 Back Flushing 275
8 Comparison Between ASME Code and TEMA Standard 276
8.1 ASME Code 276
8.2 TEMA Standards 277
8.2.1 TEMA List of Content 278
8.2.1.1 TEMA Classifications of Heat Exchangers 278
8.2.1.2 TEMA Exchanger Nomenclature 279
8.2.1.3 Advantages of TEMA Heat Exchangers 279
8.3 Main Difference Between TEMA and ASME 280
8.4 Conclusion 281
9 Brief Description of TEMA Standard 282
9.1 Nomenclature 282
9.2 Fabrication Tolerances 282
9.3 General Fabrication and Performance Information 283
9.4 Installation, Operation, and Maintenance 283
9.5 Mechanical Standards TEMA Class RCB Heat Exchangers 285
9.6 Flow-induced Vibration 288
9.7 Thermal Relations 292
9.8 Physical Properties of Fluids 292
9.9 General Information 292
9.10 Recommended Good Practice-RGP 292
References 296
Index 297