Kiran S. Kedlaya (San Diego University of California)
p-adic Differential Equations
Kiran S. Kedlaya (San Diego University of California)
p-adic Differential Equations
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book surveys the theory of $P$-adic differential equations, from the foundations of $P$-adic numbers to the current frontiers of research. It assumes only a graduate-level background in number theory, and includes detailed chapter notes as well as numerous exercises. This second edition features new material on global theory.
Andere Kunden interessierten sich auch für
- Haruzo Hida (Los Angeles University of California)Modular Forms and Galois Cohomology79,99 €
- Emmanuel Kowalski (Zurich Swiss Federal Institute of Technology)An Introduction to Probabilistic Number Theory48,99 €
- Dorian Goldfeld (New York Columbia University)Automorphic Representations and L-Functions for the General Linear Group, Volume I87,99 €
- A. Frohlich (University of London)Algebraic Number Theory99,99 €
- Alexander Schmeding (Norway Nord Universitet)An Introduction to Infinite-Dimensional Differential Geometry68,99 €
- C. T. C. Wall (University of Liverpool)Differential Topology74,99 €
- Dorian Goldfeld (New York Columbia University)Automorphic Representations and L-Functions for the General Linear Group, Volume II72,99 €
-
-
-
This book surveys the theory of $P$-adic differential equations, from the foundations of $P$-adic numbers to the current frontiers of research. It assumes only a graduate-level background in number theory, and includes detailed chapter notes as well as numerous exercises. This second edition features new material on global theory.
Produktdetails
- Produktdetails
- Cambridge Studies in Advanced Mathematics
- Verlag: Cambridge University Press
- 2 Revised edition
- Seitenzahl: 518
- Erscheinungstermin: 19. Mai 2022
- Englisch
- Abmessung: 235mm x 157mm x 35mm
- Gewicht: 856g
- ISBN-13: 9781009123341
- ISBN-10: 1009123343
- Artikelnr.: 63624359
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Cambridge Studies in Advanced Mathematics
- Verlag: Cambridge University Press
- 2 Revised edition
- Seitenzahl: 518
- Erscheinungstermin: 19. Mai 2022
- Englisch
- Abmessung: 235mm x 157mm x 35mm
- Gewicht: 856g
- ISBN-13: 9781009123341
- ISBN-10: 1009123343
- Artikelnr.: 63624359
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Kiran S. Kedlaya is the Stefan E. Warschawski Professor of Mathematics at University of California, San Diego. He has published over 100 research articles in number theory, algebraic geometry, and theoretical computer science, as well as several books, including two on the Putnam competition. He has received a Presidential Early Career Award, a Sloan Fellowship, and a Guggenheim Fellowship, and been named an ICM invited speaker and a fellow of the American Mathematical Society.
Preface
0. Introductory remarks
Part I. Tools of $P$-adic Analysis: 1. Norms on algebraic structures
2. Newton polygons
3. Ramification theory
4. Matrix analysis
Part II. Differential Algebra: 5. Formalism of differential algebra
6. Metric properties of differential modules
7. Regular and irregular singularities
Part III. $P$-adic Differential Equations on Discs and Annuli: 8. Rings of functions on discs and annuli
9. Radius and generic radius of convergence
10. Frobenius pullback and pushforward
11. Variation of generic and subsidiary radii
12. Decomposition by subsidiary radii
13. $P$-adic exponents
Part IV. Difference Algebra and Frobenius Modules: 14. Formalism of difference algebra
15. Frobenius modules
16. Frobenius modules over the Robba ring
Part V. Frobenius Structures: 17. Frobenius structures on differential modules
18. Effective convergence bounds
19. Galois representations and differential modules
Part VI. The $P$-adic Local Monodromy Theorem: 20. The $P$-adic local monodromy theorem
21. The $P$-adic local monodromy theorem: proof
22. $P$-adic monodromy without Frobenius structures
Part VII. Global Theory: 23. Banach rings and their spectra
24. The Berkovich projective line
25. Convergence polygons
26. Index theorems
27. Local constancy at type-4 points
Appendix A: Picard-Fuchs modules
Appendix B: Rigid cohomology Appendix C: $P$-adic Hodge theory
References
Index of notations
Index.
0. Introductory remarks
Part I. Tools of $P$-adic Analysis: 1. Norms on algebraic structures
2. Newton polygons
3. Ramification theory
4. Matrix analysis
Part II. Differential Algebra: 5. Formalism of differential algebra
6. Metric properties of differential modules
7. Regular and irregular singularities
Part III. $P$-adic Differential Equations on Discs and Annuli: 8. Rings of functions on discs and annuli
9. Radius and generic radius of convergence
10. Frobenius pullback and pushforward
11. Variation of generic and subsidiary radii
12. Decomposition by subsidiary radii
13. $P$-adic exponents
Part IV. Difference Algebra and Frobenius Modules: 14. Formalism of difference algebra
15. Frobenius modules
16. Frobenius modules over the Robba ring
Part V. Frobenius Structures: 17. Frobenius structures on differential modules
18. Effective convergence bounds
19. Galois representations and differential modules
Part VI. The $P$-adic Local Monodromy Theorem: 20. The $P$-adic local monodromy theorem
21. The $P$-adic local monodromy theorem: proof
22. $P$-adic monodromy without Frobenius structures
Part VII. Global Theory: 23. Banach rings and their spectra
24. The Berkovich projective line
25. Convergence polygons
26. Index theorems
27. Local constancy at type-4 points
Appendix A: Picard-Fuchs modules
Appendix B: Rigid cohomology Appendix C: $P$-adic Hodge theory
References
Index of notations
Index.
Preface
0. Introductory remarks
Part I. Tools of $P$-adic Analysis: 1. Norms on algebraic structures
2. Newton polygons
3. Ramification theory
4. Matrix analysis
Part II. Differential Algebra: 5. Formalism of differential algebra
6. Metric properties of differential modules
7. Regular and irregular singularities
Part III. $P$-adic Differential Equations on Discs and Annuli: 8. Rings of functions on discs and annuli
9. Radius and generic radius of convergence
10. Frobenius pullback and pushforward
11. Variation of generic and subsidiary radii
12. Decomposition by subsidiary radii
13. $P$-adic exponents
Part IV. Difference Algebra and Frobenius Modules: 14. Formalism of difference algebra
15. Frobenius modules
16. Frobenius modules over the Robba ring
Part V. Frobenius Structures: 17. Frobenius structures on differential modules
18. Effective convergence bounds
19. Galois representations and differential modules
Part VI. The $P$-adic Local Monodromy Theorem: 20. The $P$-adic local monodromy theorem
21. The $P$-adic local monodromy theorem: proof
22. $P$-adic monodromy without Frobenius structures
Part VII. Global Theory: 23. Banach rings and their spectra
24. The Berkovich projective line
25. Convergence polygons
26. Index theorems
27. Local constancy at type-4 points
Appendix A: Picard-Fuchs modules
Appendix B: Rigid cohomology Appendix C: $P$-adic Hodge theory
References
Index of notations
Index.
0. Introductory remarks
Part I. Tools of $P$-adic Analysis: 1. Norms on algebraic structures
2. Newton polygons
3. Ramification theory
4. Matrix analysis
Part II. Differential Algebra: 5. Formalism of differential algebra
6. Metric properties of differential modules
7. Regular and irregular singularities
Part III. $P$-adic Differential Equations on Discs and Annuli: 8. Rings of functions on discs and annuli
9. Radius and generic radius of convergence
10. Frobenius pullback and pushforward
11. Variation of generic and subsidiary radii
12. Decomposition by subsidiary radii
13. $P$-adic exponents
Part IV. Difference Algebra and Frobenius Modules: 14. Formalism of difference algebra
15. Frobenius modules
16. Frobenius modules over the Robba ring
Part V. Frobenius Structures: 17. Frobenius structures on differential modules
18. Effective convergence bounds
19. Galois representations and differential modules
Part VI. The $P$-adic Local Monodromy Theorem: 20. The $P$-adic local monodromy theorem
21. The $P$-adic local monodromy theorem: proof
22. $P$-adic monodromy without Frobenius structures
Part VII. Global Theory: 23. Banach rings and their spectra
24. The Berkovich projective line
25. Convergence polygons
26. Index theorems
27. Local constancy at type-4 points
Appendix A: Picard-Fuchs modules
Appendix B: Rigid cohomology Appendix C: $P$-adic Hodge theory
References
Index of notations
Index.