Jean Zinn-Justin (Head of Department, Dapnia, CEA / France Saclay)
Phase Transitions and Renormalization Group
Jean Zinn-Justin (Head of Department, Dapnia, CEA / France Saclay)
Phase Transitions and Renormalization Group
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The renormalization group is one of most important theoretical concepts that has emerged in physics during the twentieth century. It explains important properties of fundamental interactions at the microscopic scale, as well as universal properties of continuous macroscopic phase transitions.
Andere Kunden interessierten sich auch für
- Nigel GoldenfeldLectures On Phase Transitions And The Renormalization Group80,99 €
- Nigel GoldenfeldLectures On Phase Transitions And The Renormalization Group152,99 €
- Hidetoshi Nishimori (Tokyo Institute of Tech Department of PhysicsElements of Phase Transitions and Critical Phenomena73,99 €
- Michael Kachelriess (Professor of Physics, Professor of Physics, NoQuantum Fields -- From the Hubble to the Planck Scale65,99 €
- John C. CollinsRenormalization46,99 €
- Oleg Boyarkin (Minsk Belarus State Pedagogical University)Advanced Particle Physics Volume II91,99 €
- William David McComb (, School of Physics, University of Edinburgh,Renormalization Methods72,99 €
-
-
-
The renormalization group is one of most important theoretical concepts that has emerged in physics during the twentieth century. It explains important properties of fundamental interactions at the microscopic scale, as well as universal properties of continuous macroscopic phase transitions.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Oxford Graduate Texts
- Verlag: Oxford University Press
- Seitenzahl: 472
- Erscheinungstermin: 24. Januar 2013
- Englisch
- Abmessung: 247mm x 174mm x 27mm
- Gewicht: 762g
- ISBN-13: 9780199665167
- ISBN-10: 0199665168
- Artikelnr.: 36646518
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Oxford Graduate Texts
- Verlag: Oxford University Press
- Seitenzahl: 472
- Erscheinungstermin: 24. Januar 2013
- Englisch
- Abmessung: 247mm x 174mm x 27mm
- Gewicht: 762g
- ISBN-13: 9780199665167
- ISBN-10: 0199665168
- Artikelnr.: 36646518
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Professor Jean Zinn-Justin Head of Department, Dapnia, CEA/Saclay, France
1: Quantum Field Theory and Renormalization Group
2: Gaussian Expectation Values. Steepest Descent Method .
3: Universality and Continuum Limit
4: Classical Statistical Physics: One Dimension
5: Continuum Limit and Path Integral
6: Ferromagnetic Systems. Correlations
7: Phase transitions: Generalities and Examples
8: Quasi-Gaussian Approximation: Universality, Critical Dimension
9: Renormalization Group: General Formulation
10: Perturbative Renormalization Group: Explicit Calculations
11: Renormalization group: N-component fields
12: Statistical Field Theory: Perturbative Expansion
13: The sigma4 Field Theory near Dimension 4
14: The O(N) Symmetric (phi2)2 Field Theory: Large N Limit
15: The Non-Linear sigma-Model
16: Functional Renormalization Group
Appendix
1: Quantum Field Theory and Renormalization Group
2: Gaussian Expectation Values. Steepest Descent Method .
3: Universality and Continuum Limit
4: Classical Statistical Physics: One Dimension
5: Continuum Limit and Path Integral
6: Ferromagnetic Systems. Correlations
7: Phase transitions: Generalities and Examples
8: Quasi-Gaussian Approximation: Universality, Critical Dimension
9: Renormalization Group: General Formulation
10: Perturbative Renormalization Group: Explicit Calculations
11: Renormalization group: N-component fields
12: Statistical Field Theory: Perturbative Expansion
13: The sigma4 Field Theory near Dimension 4
14: The O(N) Symmetric (phi2)2 Field Theory: Large N Limit
15: The Non-Linear sigma-Model
16: Functional Renormalization Group
Appendix
2: Gaussian Expectation Values. Steepest Descent Method .
3: Universality and Continuum Limit
4: Classical Statistical Physics: One Dimension
5: Continuum Limit and Path Integral
6: Ferromagnetic Systems. Correlations
7: Phase transitions: Generalities and Examples
8: Quasi-Gaussian Approximation: Universality, Critical Dimension
9: Renormalization Group: General Formulation
10: Perturbative Renormalization Group: Explicit Calculations
11: Renormalization group: N-component fields
12: Statistical Field Theory: Perturbative Expansion
13: The sigma4 Field Theory near Dimension 4
14: The O(N) Symmetric (phi2)2 Field Theory: Large N Limit
15: The Non-Linear sigma-Model
16: Functional Renormalization Group
Appendix
1: Quantum Field Theory and Renormalization Group
2: Gaussian Expectation Values. Steepest Descent Method .
3: Universality and Continuum Limit
4: Classical Statistical Physics: One Dimension
5: Continuum Limit and Path Integral
6: Ferromagnetic Systems. Correlations
7: Phase transitions: Generalities and Examples
8: Quasi-Gaussian Approximation: Universality, Critical Dimension
9: Renormalization Group: General Formulation
10: Perturbative Renormalization Group: Explicit Calculations
11: Renormalization group: N-component fields
12: Statistical Field Theory: Perturbative Expansion
13: The sigma4 Field Theory near Dimension 4
14: The O(N) Symmetric (phi2)2 Field Theory: Large N Limit
15: The Non-Linear sigma-Model
16: Functional Renormalization Group
Appendix
1: Quantum Field Theory and Renormalization Group
2: Gaussian Expectation Values. Steepest Descent Method .
3: Universality and Continuum Limit
4: Classical Statistical Physics: One Dimension
5: Continuum Limit and Path Integral
6: Ferromagnetic Systems. Correlations
7: Phase transitions: Generalities and Examples
8: Quasi-Gaussian Approximation: Universality, Critical Dimension
9: Renormalization Group: General Formulation
10: Perturbative Renormalization Group: Explicit Calculations
11: Renormalization group: N-component fields
12: Statistical Field Theory: Perturbative Expansion
13: The sigma4 Field Theory near Dimension 4
14: The O(N) Symmetric (phi2)2 Field Theory: Large N Limit
15: The Non-Linear sigma-Model
16: Functional Renormalization Group
Appendix
1: Quantum Field Theory and Renormalization Group
2: Gaussian Expectation Values. Steepest Descent Method .
3: Universality and Continuum Limit
4: Classical Statistical Physics: One Dimension
5: Continuum Limit and Path Integral
6: Ferromagnetic Systems. Correlations
7: Phase transitions: Generalities and Examples
8: Quasi-Gaussian Approximation: Universality, Critical Dimension
9: Renormalization Group: General Formulation
10: Perturbative Renormalization Group: Explicit Calculations
11: Renormalization group: N-component fields
12: Statistical Field Theory: Perturbative Expansion
13: The sigma4 Field Theory near Dimension 4
14: The O(N) Symmetric (phi2)2 Field Theory: Large N Limit
15: The Non-Linear sigma-Model
16: Functional Renormalization Group
Appendix
2: Gaussian Expectation Values. Steepest Descent Method .
3: Universality and Continuum Limit
4: Classical Statistical Physics: One Dimension
5: Continuum Limit and Path Integral
6: Ferromagnetic Systems. Correlations
7: Phase transitions: Generalities and Examples
8: Quasi-Gaussian Approximation: Universality, Critical Dimension
9: Renormalization Group: General Formulation
10: Perturbative Renormalization Group: Explicit Calculations
11: Renormalization group: N-component fields
12: Statistical Field Theory: Perturbative Expansion
13: The sigma4 Field Theory near Dimension 4
14: The O(N) Symmetric (phi2)2 Field Theory: Large N Limit
15: The Non-Linear sigma-Model
16: Functional Renormalization Group
Appendix
1: Quantum Field Theory and Renormalization Group
2: Gaussian Expectation Values. Steepest Descent Method .
3: Universality and Continuum Limit
4: Classical Statistical Physics: One Dimension
5: Continuum Limit and Path Integral
6: Ferromagnetic Systems. Correlations
7: Phase transitions: Generalities and Examples
8: Quasi-Gaussian Approximation: Universality, Critical Dimension
9: Renormalization Group: General Formulation
10: Perturbative Renormalization Group: Explicit Calculations
11: Renormalization group: N-component fields
12: Statistical Field Theory: Perturbative Expansion
13: The sigma4 Field Theory near Dimension 4
14: The O(N) Symmetric (phi2)2 Field Theory: Large N Limit
15: The Non-Linear sigma-Model
16: Functional Renormalization Group
Appendix