This is an introduction to advanced analysis at the beginning graduate level that blends a modern presentation with concrete examples and applications, in particular in the areas of calculus of variations and partial differential equations. The book does not strive for abstraction for its own sake, but tries rather to impart a working knowledge of the key methods of contemporary analysis, in particular those that are also relevant for application in physics. It provides a streamlined and quick introduction to the fundamental concepts of Banach space and Lebesgue integration theory and the…mehr
This is an introduction to advanced analysis at the beginning graduate level that blends a modern presentation with concrete examples and applications, in particular in the areas of calculus of variations and partial differential equations. The book does not strive for abstraction for its own sake, but tries rather to impart a working knowledge of the key methods of contemporary analysis, in particular those that are also relevant for application in physics. It provides a streamlined and quick introduction to the fundamental concepts of Banach space and Lebesgue integration theory and the basic notions of the calculus of variations, including Sobolev space theory. The third edition contains new material on further important tool in analysis, namely cover theorems. Useful references for such results and further properties of various classes of weakly differential functions are added. And finally, misprints and minor inconsistencies have been corrected.What is the title of this book intended to signify, what connotations is the adjective "Postmodern" meant to carry? A potential reader will surely pose this question. To answer it, I should describe what distinguishes the - proach to analysis presented here from what has by its protagonists been called "Modern Analysis". "Modern Analysis" as represented in the works of the Bourbaki group or in the textbooks by Jean Dieudonn´ e is characterized by its systematic and axiomatic treatment and by its drive towards a high level of abstraction. Given the tendency of many prior treatises on analysis to degenerate into a collection of rather unconnected tricks to solve special problems, this de?nitely represented a healthy achievement. In any case, for the development of a consistent and powerful mathematical theory, it seems to be necessary to concentrate solely on the internal problems and structures and to neglect the relations to other ?elds of scienti?c, even of mathematical study for a certain while. Almost complete isolation may be required to reach the level of intellectual elegance and perfection that only a good mathem- ical theory can acquire. However, once this level has been reached, it can be useful to open one's eyes again to the inspiration coming from concrete external problems.
Artikelnr. des Verlages: 11422136, 978-3-540-25830-8
3rd ed.
Seitenzahl: 392
Erscheinungstermin: 1. August 2005
Englisch
Abmessung: 235mm x 155mm x 22mm
Gewicht: 600g
ISBN-13: 9783540258308
ISBN-10: 3540258302
Artikelnr.: 07402218
Herstellerkennzeichnung
Springer-Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg
ProductSafety@springernature.com
Autorenporträt
Jürgen Jost is Codirector of the Max Planck Institute for Mathematics in the Sciences in Leipzig, Germany, an Honorary Professor at the Department of Mathematics and Computer Sciences at Leipzig University, and an External Faculty Member of the Santa Fe Institute for the Sciences of Complexity, New Mexico, USA. He is the author of a number of further Springer textbooks including Postmodern Analysis (1997, 2002, 2005), Compact Riemann Surfaces (1997, 2002, 2006), Partial Differential Equations (2002, 2007, 2013), Differentialgeometrie und Minimalflächen (1994, 2007, 2014, with J. Eschenburg), Dynamical Systems (2005), Mathematical Concepts (2015), as well as several research monographs, such as Geometry and Physics (2009), and many publications in scientific journals.
Inhaltsangabe
Calculus for Functions of One Variable.- Prerequisites.- Limits and Continuity of Functions.- Differentiability.- Characteristic Properties of Differentiable Functions. Differential Equations.- The Banach Fixed Point Theorem. The Concept of Banach Space.- Uniform Convergence. Interchangeability of Limiting Processes. Examples of Banach Spaces. The Theorem of Arzela-Ascoli.- Integrals and Ordinary Differential Equations.- Topological Concepts.- Metric Spaces: Continuity, Topological Notions, Compact Sets.- Calculus in Euclidean and Banach Spaces.- Differentiation in Banach Spaces.- Differential Calculus in $$mathbb{R}$$ d.- The Implicit Function Theorem. Applications.- Curves in $$mathbb{R}$$ d. Systems of ODEs.- The Lebesgue Integral.- Preparations. Semicontinuous Functions.- The Lebesgue Integral for Semicontinuous Functions. The Volume of Compact Sets.- Lebesgue Integrable Functions and Sets.- Null Functions and Null Sets. The Theorem of Fubini.- The Convergence Theorems of Lebesgue Integration Theory.- Measurable Functions and Sets. Jensen's Inequality. The Theorem of Egorov.- The Transformation Formula.- and Sobolev Spaces.- The Lp-Spaces.- Integration by Parts. Weak Derivatives. Sobolev Spaces.- to the Calculus of Variations and Elliptic Partial Differential Equations.- Hilbert Spaces. Weak Convergence.- Variational Principles and Partial Differential Equations.- Regularity of Weak Solutions.- The Maximum Principle.- The Eigenvalue Problem for the Laplace Operator.
Calculus for Functions of One Variable.- Prerequisites.- Limits and Continuity of Functions.- Differentiability.- Characteristic Properties of Differentiable Functions. Differential Equations.- The Banach Fixed Point Theorem. The Concept of Banach Space.- Uniform Convergence. Interchangeability of Limiting Processes. Examples of Banach Spaces. The Theorem of Arzela-Ascoli.- Integrals and Ordinary Differential Equations.- Topological Concepts.- Metric Spaces: Continuity, Topological Notions, Compact Sets.- Calculus in Euclidean and Banach Spaces.- Differentiation in Banach Spaces.- Differential Calculus in $$mathbb{R}$$ d.- The Implicit Function Theorem. Applications.- Curves in $$mathbb{R}$$ d. Systems of ODEs.- The Lebesgue Integral.- Preparations. Semicontinuous Functions.- The Lebesgue Integral for Semicontinuous Functions. The Volume of Compact Sets.- Lebesgue Integrable Functions and Sets.- Null Functions and Null Sets. The Theorem of Fubini.- The Convergence Theorems of Lebesgue Integration Theory.- Measurable Functions and Sets. Jensen's Inequality. The Theorem of Egorov.- The Transformation Formula.- and Sobolev Spaces.- The Lp-Spaces.- Integration by Parts. Weak Derivatives. Sobolev Spaces.- to the Calculus of Variations and Elliptic Partial Differential Equations.- Hilbert Spaces. Weak Convergence.- Variational Principles and Partial Differential Equations.- Regularity of Weak Solutions.- The Maximum Principle.- The Eigenvalue Problem for the Laplace Operator.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826