Powered Prostheses: Design, Control, and Clinical Applications presents the state-of-the-art in design, control and application of assistive technologies used in rehabilitation, including powered prostheses used in lower and upper extremity amputees and orthosis used in the rehabilitation of various joint disorders. The progress made in this field over the last decade is so vast that any new researcher in this field will have to spend years digesting the main achievements and challenges that remain. This book provides a comprehensive vision of advances, along with the challenges that remain on the path to the development of true bionic technology. …mehr
Powered Prostheses: Design, Control, and Clinical Applications presents the state-of-the-art in design, control and application of assistive technologies used in rehabilitation, including powered prostheses used in lower and upper extremity amputees and orthosis used in the rehabilitation of various joint disorders. The progress made in this field over the last decade is so vast that any new researcher in this field will have to spend years digesting the main achievements and challenges that remain. This book provides a comprehensive vision of advances, along with the challenges that remain on the path to the development of true bionic technology.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Assistant Professor, Department of Computer Science, California State University Channel Islands, Camarillo, USA
Emel Demircan is an Associate Professor in the Departments of Mechanical and Aerospace Engineering and Biomedical Engineering at California State University, Long Beach. She earned her Ph.D. in Mechanical Engineering from Stanford University in 2012, followed by postdoctoral research at Stanford and a visiting assistant professorship at the University of Tokyo. Her research applies dynamics and control theory to simulate and analyze biomechanical and robotic systems. Interests include cyber-physical systems, rehabilitation robotics, sports biomechanics, natural motion generation in humanoid robotics, and human motion synthesis. She is an OpenSim Fellow and co-founder and co-chair of the IEEE Robotics and Automation Society Technical Committee on Human Movement Understanding. Dr. Demircan collaborates extensively with clinical, athletic, and industrial partners and is actively involved in IEEE Robotics Society professional and educational activities.
Mo Rastgaar is an associate professor at Polytechnic Institute at Purdue University. He received his PhD in Mechanical Engineering from Virginia Tech in 2008 and continued his research as a postdoc at MIT till 2010. He was an associate professor of Mechanical Engineering at Michigan Tech prior to joining Purdue in 2019. His research interests are Dynamics, Controls, Human-Robot Physical Interactions, and Design and Control of Assistive Robots and Robotic Prostheses.
Inhaltsangabe
1. Control of transhumeral prostheses based on electromyography pattern recognition: from amputees to deep learning 2. The 2-DOF mechanical impedance of the human ankle during poses of the stance phase 3. Task-dependent modulation of multi-dimensional human ankle stiffness 4. Kriging for prosthesis control 5. Disturbance observer applications in rehabilitation robotics: an overview 6. Reduction in the metabolic cost of human walking gaits using quasi-passive upper body exoskeleton 7. Neural control in prostheses and exoskeletons 8. Stair negotiation made easier using low-energy interactive stairs 9. Semi-active prostheses for low-power gait adaptation
1. Control of transhumeral prostheses based on electromyography pattern recognition: from amputees to deep learning 2. The 2-DOF mechanical impedance of the human ankle during poses of the stance phase 3. Task-dependent modulation of multi-dimensional human ankle stiffness 4. Kriging for prosthesis control 5. Disturbance observer applications in rehabilitation robotics: an overview 6. Reduction in the metabolic cost of human walking gaits using quasi-passive upper body exoskeleton 7. Neural control in prostheses and exoskeletons 8. Stair negotiation made easier using low-energy interactive stairs 9. Semi-active prostheses for low-power gait adaptation
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826