29,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
15 °P sammeln
  • Broschiertes Buch

A avaliação do risco de empréstimos desempenha um papel fundamental no sector financeiro e os modelos preditivos são essenciais para tomar decisões de empréstimo informadas. Este projeto de investigação investiga o domínio da avaliação do risco de crédito, um aspeto crítico da indústria financeira, propondo uma abordagem inovadora que utiliza o algoritmo Feed Forward Neural Network (FNN). O foco principal é comparar a eficácia do algoritmo FNN com as Máquinas de Vectores de Suporte (SVM) amplamente adoptadas para a previsão do risco de empréstimo. O objetivo é avaliar a eficácia do algoritmo…mehr

Produktbeschreibung
A avaliação do risco de empréstimos desempenha um papel fundamental no sector financeiro e os modelos preditivos são essenciais para tomar decisões de empréstimo informadas. Este projeto de investigação investiga o domínio da avaliação do risco de crédito, um aspeto crítico da indústria financeira, propondo uma abordagem inovadora que utiliza o algoritmo Feed Forward Neural Network (FNN). O foco principal é comparar a eficácia do algoritmo FNN com as Máquinas de Vectores de Suporte (SVM) amplamente adoptadas para a previsão do risco de empréstimo. O objetivo é avaliar a eficácia do algoritmo FNN na previsão de incumprimentos de empréstimos, visando uma compreensão abrangente do seu desempenho em comparação com o SVM. Os resultados obtidos são promissores, indicando a precisão superior do modelo FNN em comparação com o SVM. Este facto realça o potencial do algoritmo FNN para revolucionar a avaliação do risco de crédito. As nossas conclusões sublinham a importância de tirar partido da IA e do ML, especificamente das redes neuronais, para aumentar a precisão e a fiabilidade dos sistemas de previsão do risco de crédito. O desempenho impressionante do modelo FNN posiciona-o como um divisor de águas neste campo, oferecendo maior precisão e fiabilidade nos sistemas de previsão do risco de crédito.
Autorenporträt
La Dra. Kirti Hemant Wanjale trabaja actualmente como profesora en el Departamento de Ingeniería Informática del Instituto Tecnológico Vishwakarma, en Pune. Obtuvo su doctorado en la Facultad de Ingeniería Informática de la SSSTUMS, en Sehore (Madhya Pradesh). Cuenta con 22 años de experiencia. Sus principales intereses de investigación son las redes de sensores inalámbricos y el Internet de las cosas.