This is a new approach to the theory of non-holomorphic modular forms, based on ideas from quantization theory or pseudodifferential analysis. Extending the Rankin-Selberg method so as to apply it to the calculation of the Roelcke-Selberg decomposition of the product of two Eisenstein series, one lets Maass cusp-forms appear as residues of simple, Eisenstein-like, series. Other results, based on quantization theory, include a reinterpretation of the Lax-Phillips scattering theory for the automorphic wave equation, in terms of distributions on R2 automorphic with respect to the linear action of SL(2,Z).…mehr
This is a new approach to the theory of non-holomorphic modular forms, based on ideas from quantization theory or pseudodifferential analysis. Extending the Rankin-Selberg method so as to apply it to the calculation of the Roelcke-Selberg decomposition of the product of two Eisenstein series, one lets Maass cusp-forms appear as residues of simple, Eisenstein-like, series. Other results, based on quantization theory, include a reinterpretation of the Lax-Phillips scattering theory for the automorphic wave equation, in terms of distributions on R2 automorphic with respect to the linear action of SL(2,Z).
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Universite de Reims, France andre.untererger@univ-reims.fr
Inhaltsangabe
Distributions associated with the non-unitary principal series.- Modular distributions.- The principal series of SL(2, ?) and the Radon transform.- Another look at the composition of Weyl symbols.- The Roelcke-Selberg decomposition and the Radon transform.- Recovering the Roelcke-Selberg coefficients of a function in L 2(???).- The "product" of two Eisenstein distributions.- The roelcke-selberg expansion of the product of two eisenstein series: the continuous part.- A digression on kloosterman sums.- The roelcke-selberg expansion of the product of two eisenstein series: the discrete part.- The expansion of the poisson bracket of two eisenstein series.- Automorphic distributions on ?2.- The Hecke decomposition of products or Poisson brackets of two Eisenstein series.- A generating series of sorts for Maass cusp-forms.- Some arithmetic distributions.- Quantization, products and Poisson brackets.- Moving to the forward light-cone: the Lax-Phillips theory revisited.- Automorphic functions associated with quadratic PSL(2, ?)-orbits in P 1(?).- Quadratic orbits: a dual problem.
Distributions associated with the non-unitary principal series.- Modular distributions.- The principal series of SL(2, ?) and the Radon transform.- Another look at the composition of Weyl symbols.- The Roelcke-Selberg decomposition and the Radon transform.- Recovering the Roelcke-Selberg coefficients of a function in L 2(???).- The "product" of two Eisenstein distributions.- The roelcke-selberg expansion of the product of two eisenstein series: the continuous part.- A digression on kloosterman sums.- The roelcke-selberg expansion of the product of two eisenstein series: the discrete part.- The expansion of the poisson bracket of two eisenstein series.- Automorphic distributions on ?2.- The Hecke decomposition of products or Poisson brackets of two Eisenstein series.- A generating series of sorts for Maass cusp-forms.- Some arithmetic distributions.- Quantization, products and Poisson brackets.- Moving to the forward light-cone: the Lax-Phillips theory revisited.- Automorphic functions associated with quadratic PSL(2, ?)-orbits in P 1(?).- Quadratic orbits: a dual problem.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826