75,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
38 °P sammeln
  • Gebundenes Buch

Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.
Content.- One Quantum SL(2).- I Preliminaries.- II Tensor Products.- III The Language of Hopf Algebras.- IV The
…mehr

Produktbeschreibung
Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.
Content.- One Quantum SL(2).- I Preliminaries.- II Tensor Products.- III The Language of Hopf Algebras.- IV The Quantum Plane and Its Symmetries.- V The Lie Algebra of SL(2).- VI The Quantum Enveloping Algebra of sl(2).- VII A Hopf Algebra Structure on Uq(sl(2)).- Two Universal R-Matrices.- VIII The Yang-Baxter Equation and (Co)Braided Bialgebras.- IX Drinfeld's Quantum Double.- Three Low-Dimensional Topology and Tensor Categories.- X Knots, Links, Tangles, and Braids.- XI Tensor Categories.- XII The Tangle Category.- XIII Braidings.- XIV Duality in Tensor Categories.- XV Quasi-Bialgebras.- Four Quantum Groups and Monodromy.- XVI Generalities on Quantum Enveloping Algebras.- XVII Drinfeld and Jimbo's Quantum Enveloping Algebras.- XVIII Cohomology and Rigidity Theorems.- XIX Monodromy of the Knizhnik-Zamolodchikov Equations.- XX Postlude A Universal Knot Invariant.- References.
Autorenporträt
Dr. Christian Kassel is the director of CNRS (Centre National de la Recherche Scientifique in France), was the director of l'Institut de Recherche Mathematique Avancee from 2000 to 2004, and is an editor for the Journal of Pure and Applied Algebra. Kassel has numerous publications, including the book Quantum Groups in the Springer Gradate Texts in Mathematics series. Dr. Vladimir Turaev was also a professor at the CNRS and is currently at Indiana University in the Department of Mathematics.