Over the past 30 years, significant advances have been made in the field of integrable systems and their applications in statistical mechanics and mathematical physics, yet no book on the subject has been published since 1993. This monograph, the work of established authors in quantum mechanics, introduces the subject in a clear, logical way. The treatment first builds the background in classical physics and nonlinear systems, then moves to the quantum case before presenting the latest research and applications. The authors' clear approach and examples based on concrete physical models rather…mehr
Over the past 30 years, significant advances have been made in the field of integrable systems and their applications in statistical mechanics and mathematical physics, yet no book on the subject has been published since 1993. This monograph, the work of established authors in quantum mechanics, introduces the subject in a clear, logical way. The treatment first builds the background in classical physics and nonlinear systems, then moves to the quantum case before presenting the latest research and applications. The authors' clear approach and examples based on concrete physical models rather than abstract mathematics make the book useful to both the theoretical and applications-oriented audiences.
NONLINEAR SYSTEMS AND CLASSICAL IST Introduction Definition of Integrability Lax Pair Technique Inverse Scattering Transform Hamiltonian Structure COORDINATE BETHE ANSATZ Introduction Nonlinear Systems and the CBA Fermionic System Boundary Condition in Bethe Ansatz Heisenberg Spin Chain Spin of the Bethe Ansatz State Other Integrable Models YANG-BAXTER EQUATION Introduction General Description Factorized Scattering Baxter's Star Triangle Relation Vertex Models Reflection Equation Algebra CONTINUOUS INTEGRABLE SYSTEMS Introduction Quantum Continuous Integrable Systems Conserved Quantities Nonultralocal systems and the YBE Operator Product Expansion and YBE Finite Boundary Conditions Modified Classical Yang-Baxter Equation ALGEBRAIC BETHE ANSATZ Introduction Discrete Self Trapping Model Asymmetric XXZ Model in a Magnetic Field Analytical Bethe Ansatz Off-Shell Bethe Ansatz Nested Bethe Ansatz Fusion Procedure Fusion Procedure for Open chains Fusion Procedure for Transfer Matrices Application of Fusion Procedure INTEGRABLE LONG-RANGE MODELS Introduction Long-Range Models from the ABA Symmetry Transformation Calogero-Moser Models SEPARATION OF VARIABLES Introduction Hamilton-Jacobi Equation Sklyanin's Method for SoV Goryachev-Chaplygin Top Quantum Case and the Role of Lie Algebra Bi-Hamiltonian Structure and SoV SoV for GCM Model SoV and Boundary Conditions BACKLUND TRANSFORMATIONS Introduction Permutability Theorem Backlund Transformations and Classical Inverse Scattering Backlund Transformations from Riccati Equation Darboux Backlund Transformations The Exponential Lattice Canonical Transformations Group Property of Backlund Transformations Recent Developments in Backlund Transformation Theory Sklyanin's Formalism for Canonical Backlund Transformations Extended Phase Space Method Quantization of Backlund Transformations Method of Projection Operators QUANTUM GLM EQUATION Introduction Quantum GLM Equation Quantum Floquet Function Exact Quantization Quantum GLM Equation in a Continuous System Bound States and an Alternative Approach APPENDICES Direct Product Calculus Grassman Algebra Bethe Ansatz Equation AKNS Problem BIBLIOGRAPHY INDEX
NONLINEAR SYSTEMS AND CLASSICAL IST Introduction Definition of Integrability Lax Pair Technique Inverse Scattering Transform Hamiltonian Structure COORDINATE BETHE ANSATZ Introduction Nonlinear Systems and the CBA Fermionic System Boundary Condition in Bethe Ansatz Heisenberg Spin Chain Spin of the Bethe Ansatz State Other Integrable Models YANG-BAXTER EQUATION Introduction General Description Factorized Scattering Baxter's Star Triangle Relation Vertex Models Reflection Equation Algebra CONTINUOUS INTEGRABLE SYSTEMS Introduction Quantum Continuous Integrable Systems Conserved Quantities Nonultralocal systems and the YBE Operator Product Expansion and YBE Finite Boundary Conditions Modified Classical Yang-Baxter Equation ALGEBRAIC BETHE ANSATZ Introduction Discrete Self Trapping Model Asymmetric XXZ Model in a Magnetic Field Analytical Bethe Ansatz Off-Shell Bethe Ansatz Nested Bethe Ansatz Fusion Procedure Fusion Procedure for Open chains Fusion Procedure for Transfer Matrices Application of Fusion Procedure INTEGRABLE LONG-RANGE MODELS Introduction Long-Range Models from the ABA Symmetry Transformation Calogero-Moser Models SEPARATION OF VARIABLES Introduction Hamilton-Jacobi Equation Sklyanin's Method for SoV Goryachev-Chaplygin Top Quantum Case and the Role of Lie Algebra Bi-Hamiltonian Structure and SoV SoV for GCM Model SoV and Boundary Conditions BACKLUND TRANSFORMATIONS Introduction Permutability Theorem Backlund Transformations and Classical Inverse Scattering Backlund Transformations from Riccati Equation Darboux Backlund Transformations The Exponential Lattice Canonical Transformations Group Property of Backlund Transformations Recent Developments in Backlund Transformation Theory Sklyanin's Formalism for Canonical Backlund Transformations Extended Phase Space Method Quantization of Backlund Transformations Method of Projection Operators QUANTUM GLM EQUATION Introduction Quantum GLM Equation Quantum Floquet Function Exact Quantization Quantum GLM Equation in a Continuous System Bound States and an Alternative Approach APPENDICES Direct Product Calculus Grassman Algebra Bethe Ansatz Equation AKNS Problem BIBLIOGRAPHY INDEX
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826