20,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
10 °P sammeln
  • Broschiertes Buch

Modern semiconductor devices are principally made using the element silicon. In recent years, silicon carbide (SiC), with its wide band-gap, high thermal conductivity, and radiation resistance, has shown prospects as a semiconductor material for use in high temperature and radiation environments such as jet engines and satellites. A limiting factor in the performance of many SiC semiconductor components is the presence of lattice defects formed at oxide dielectric junctions during processing. Recent theoretical work has used small quantum mechanical systems embedded in larger molecular…mehr

Produktbeschreibung
Modern semiconductor devices are principally made using the element silicon. In recent years, silicon carbide (SiC), with its wide band-gap, high thermal conductivity, and radiation resistance, has shown prospects as a semiconductor material for use in high temperature and radiation environments such as jet engines and satellites. A limiting factor in the performance of many SiC semiconductor components is the presence of lattice defects formed at oxide dielectric junctions during processing. Recent theoretical work has used small quantum mechanical systems embedded in larger molecular mechanics structures to attempt to better understand SiC surfaces and bulk materials and their oxidation. This research uses quantum mechanical models to calculate geometries and electronic properties of small SimCnO molecular clusters of silicon carbide oxides with 0 [less than or equal to] m, n [less than or equal to] 4. Calculations are primarily done using Hartree-Fock and Density Functional Theory (DFT) with the B3LYP exchange and correlation functionals. Meuller-Plesset Second Order Perturbation (MP2), Configuration Interaction (CI), Multi-Configurational Self-Consistent Field (MCSCF), and Coupled Cluster (CC) are used on the CSi2O molecule to confirm the accuracy of selected levels of DFT. Molecular properties examined include ground state multiplicity, vibrational modes and frequencies, and geometry for both the neutral and anion, adiabatic and vertical electron affinities, and thermodynamic heats of formation. Qualitative predictions are made regarding the photoelectron spectrum experimentalists may see. Finally, preferred geometries, functional groups, and bonding locations are qualitatively determined. Later research will be able to use these results to study the oxidation of larger SiC structures and surfaces and their defects. This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.