29,99 €
inkl. MwSt.

Versandfertig in über 4 Wochen
payback
15 °P sammeln
  • Broschiertes Buch

In this book, the authors describe how quantum mechanics can be used to predict and analyze diatomic molecule spectra in a gaseous state by discussing the calculation of their spectral line intensities. The book provides a comprehensive overview on diatomic molecule fundamentals before emphasising the applications of spectroscopy predictions in analysis of experimental data.

Produktbeschreibung
In this book, the authors describe how quantum mechanics can be used to predict and analyze diatomic molecule spectra in a gaseous state by discussing the calculation of their spectral line intensities. The book provides a comprehensive overview on diatomic molecule fundamentals before emphasising the applications of spectroscopy predictions in analysis of experimental data.
Autorenporträt
Christian Parigger has been an Associate Professor of Physics and Astronomy at the University of Tennessee from 1996 to 2023. His research interests include fundamental and applied spectroscopy, nonlinear optics, quantum optics, ultrafast phenomena, ultrasensitive diagnostics, lasers, combustion and plasma physics, optical diagnostics, biomedical applications, and in general, atomic and molecular and optical (AMO) Physics. His work encompasses experimental, theoretical and computational research together with teaching, service, and outreach at the Center for Laser Applications (CLA) at The University of Tennessee Space Institute, USA.

James Hornkohl has made research contributions encompassing spectroscopy of diatomic molecules and its application to diagnosis of combustion, plasmas, rocket propulsion and related problems. The extensive collaboration of the two authors during more than 30 years at the CLA has been most stimulating and encouraging.