Per Christian Hansen
Rank-Deficient and Discrete III-Posed Problems
Numerical Aspects of Linear Inversion
Per Christian Hansen
Rank-Deficient and Discrete III-Posed Problems
Numerical Aspects of Linear Inversion
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Presents an overview of modern computational stabilization methods for linear inversion, with applications to a variety of problems in audio processing, medical imaging, tomography, seismology, astronomy, and other areas.
Andere Kunden interessierten sich auch für
- Mike PiffDiscrete Mathematics68,99 €
- Sigsim Pads 13 Conference CommittteeSigsim Pads 13 Proceedings of the 2013 ACM Sigsim Principles of Advanced Discrete Simulation106,99 €
- Bogdan SavchynskyyDiscrete Graphical Models - An Optimization Perspective102,99 €
- Sigsim- Pads 16 Conference CommitteeACM SIGSIM Conference on Principles on Advances Discrete Simulation71,99 €
- Bengt FornbergA Primer on Radial Basis Functions with Applications to the Geosciences80,99 €
- Harry DankowiczRecipes for Continuation102,99 €
- Herbert K H LeeBayesian Nonparametrics Via Neural Networks59,99 €
-
-
-
Presents an overview of modern computational stabilization methods for linear inversion, with applications to a variety of problems in audio processing, medical imaging, tomography, seismology, astronomy, and other areas.
Produktdetails
- Produktdetails
- Verlag: Society for Industrial and Applied Mathematics (SIAM)
- Seitenzahl: 263
- Erscheinungstermin: 1. Januar 1987
- Englisch
- Abmessung: 255mm x 179mm x 13mm
- Gewicht: 514g
- ISBN-13: 9780898714036
- ISBN-10: 0898714036
- Artikelnr.: 23249034
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Society for Industrial and Applied Mathematics (SIAM)
- Seitenzahl: 263
- Erscheinungstermin: 1. Januar 1987
- Englisch
- Abmessung: 255mm x 179mm x 13mm
- Gewicht: 514g
- ISBN-13: 9780898714036
- ISBN-10: 0898714036
- Artikelnr.: 23249034
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
1. Preface
2. Symbols and Acronyms
3. Chapter 1: Setting the Stage. Problems With Ill-Conditioned Matrices
4. Ill-Posed and Inverse Problems
5. Prelude to Regularization
6. Four Test Problems
7. Chapter 2: Decompositions and Other Tools. The SVD and its Generalizations
8. Rank-Revealing Decompositions
9. Transformation to Standard Form
10. Computation of the SVE
11. Chapter 3: Methods for Rank-Deficient Problems. Numerical Rank
12. Truncated SVD and GSVD
13. Truncated Rank-Revealing Decompositions
14. Truncated Decompositions in Action
15. Chapter 4. Problems with Ill-Determined Rank. Characteristics of Discrete
Ill-Posed Problems
16. Filter Factors
17. Working with Seminorms
18. The Resolution Matrix, Bias, and Variance
19. The Discrete Picard Condition
20. L-Curve Analysis
21. Random Test Matrices for Regularization Methods
22. The Analysis Tools in Action
23. Chapter 5: Direct Regularization Methods. Tikhonov Regularization
24. The Regularized General Gauss–Markov Linear Model
25. Truncated SVD and GSVD Again
26. Algorithms Based on Total Least Squares
27. Mollifier Methods
28. Other Direct Methods
29. Characterization of Regularization Methods
30. Direct Regularization Methods in Action
31. Chapter 6: Iterative Regularization Methods. Some Practicalities
32. Classical Stationary Iterative Methods
33. Regularizing CG Iterations
34. Convergence Properties of Regularizing CG Iterations
35. The LSQR Algorithm in Finite Precision
36. Hybrid Methods
37. Iterative Regularization Methods in Action
38. Chapter 7: Parameter-Choice Methods. Pragmatic Parameter Choice
39. The Discrepancy Principle
40. Methods Based on Error Estimation
41. Generalized Cross-Validation
42. The L-Curve Criterion
43. Parameter-Choice Methods in Action
44. Experimental Comparisons of the Methods
45. Chapter 8. Regularization Tools
46. Bibliography
47. Index.
2. Symbols and Acronyms
3. Chapter 1: Setting the Stage. Problems With Ill-Conditioned Matrices
4. Ill-Posed and Inverse Problems
5. Prelude to Regularization
6. Four Test Problems
7. Chapter 2: Decompositions and Other Tools. The SVD and its Generalizations
8. Rank-Revealing Decompositions
9. Transformation to Standard Form
10. Computation of the SVE
11. Chapter 3: Methods for Rank-Deficient Problems. Numerical Rank
12. Truncated SVD and GSVD
13. Truncated Rank-Revealing Decompositions
14. Truncated Decompositions in Action
15. Chapter 4. Problems with Ill-Determined Rank. Characteristics of Discrete
Ill-Posed Problems
16. Filter Factors
17. Working with Seminorms
18. The Resolution Matrix, Bias, and Variance
19. The Discrete Picard Condition
20. L-Curve Analysis
21. Random Test Matrices for Regularization Methods
22. The Analysis Tools in Action
23. Chapter 5: Direct Regularization Methods. Tikhonov Regularization
24. The Regularized General Gauss–Markov Linear Model
25. Truncated SVD and GSVD Again
26. Algorithms Based on Total Least Squares
27. Mollifier Methods
28. Other Direct Methods
29. Characterization of Regularization Methods
30. Direct Regularization Methods in Action
31. Chapter 6: Iterative Regularization Methods. Some Practicalities
32. Classical Stationary Iterative Methods
33. Regularizing CG Iterations
34. Convergence Properties of Regularizing CG Iterations
35. The LSQR Algorithm in Finite Precision
36. Hybrid Methods
37. Iterative Regularization Methods in Action
38. Chapter 7: Parameter-Choice Methods. Pragmatic Parameter Choice
39. The Discrepancy Principle
40. Methods Based on Error Estimation
41. Generalized Cross-Validation
42. The L-Curve Criterion
43. Parameter-Choice Methods in Action
44. Experimental Comparisons of the Methods
45. Chapter 8. Regularization Tools
46. Bibliography
47. Index.
1. Preface
2. Symbols and Acronyms
3. Chapter 1: Setting the Stage. Problems With Ill-Conditioned Matrices
4. Ill-Posed and Inverse Problems
5. Prelude to Regularization
6. Four Test Problems
7. Chapter 2: Decompositions and Other Tools. The SVD and its Generalizations
8. Rank-Revealing Decompositions
9. Transformation to Standard Form
10. Computation of the SVE
11. Chapter 3: Methods for Rank-Deficient Problems. Numerical Rank
12. Truncated SVD and GSVD
13. Truncated Rank-Revealing Decompositions
14. Truncated Decompositions in Action
15. Chapter 4. Problems with Ill-Determined Rank. Characteristics of Discrete
Ill-Posed Problems
16. Filter Factors
17. Working with Seminorms
18. The Resolution Matrix, Bias, and Variance
19. The Discrete Picard Condition
20. L-Curve Analysis
21. Random Test Matrices for Regularization Methods
22. The Analysis Tools in Action
23. Chapter 5: Direct Regularization Methods. Tikhonov Regularization
24. The Regularized General Gauss–Markov Linear Model
25. Truncated SVD and GSVD Again
26. Algorithms Based on Total Least Squares
27. Mollifier Methods
28. Other Direct Methods
29. Characterization of Regularization Methods
30. Direct Regularization Methods in Action
31. Chapter 6: Iterative Regularization Methods. Some Practicalities
32. Classical Stationary Iterative Methods
33. Regularizing CG Iterations
34. Convergence Properties of Regularizing CG Iterations
35. The LSQR Algorithm in Finite Precision
36. Hybrid Methods
37. Iterative Regularization Methods in Action
38. Chapter 7: Parameter-Choice Methods. Pragmatic Parameter Choice
39. The Discrepancy Principle
40. Methods Based on Error Estimation
41. Generalized Cross-Validation
42. The L-Curve Criterion
43. Parameter-Choice Methods in Action
44. Experimental Comparisons of the Methods
45. Chapter 8. Regularization Tools
46. Bibliography
47. Index.
2. Symbols and Acronyms
3. Chapter 1: Setting the Stage. Problems With Ill-Conditioned Matrices
4. Ill-Posed and Inverse Problems
5. Prelude to Regularization
6. Four Test Problems
7. Chapter 2: Decompositions and Other Tools. The SVD and its Generalizations
8. Rank-Revealing Decompositions
9. Transformation to Standard Form
10. Computation of the SVE
11. Chapter 3: Methods for Rank-Deficient Problems. Numerical Rank
12. Truncated SVD and GSVD
13. Truncated Rank-Revealing Decompositions
14. Truncated Decompositions in Action
15. Chapter 4. Problems with Ill-Determined Rank. Characteristics of Discrete
Ill-Posed Problems
16. Filter Factors
17. Working with Seminorms
18. The Resolution Matrix, Bias, and Variance
19. The Discrete Picard Condition
20. L-Curve Analysis
21. Random Test Matrices for Regularization Methods
22. The Analysis Tools in Action
23. Chapter 5: Direct Regularization Methods. Tikhonov Regularization
24. The Regularized General Gauss–Markov Linear Model
25. Truncated SVD and GSVD Again
26. Algorithms Based on Total Least Squares
27. Mollifier Methods
28. Other Direct Methods
29. Characterization of Regularization Methods
30. Direct Regularization Methods in Action
31. Chapter 6: Iterative Regularization Methods. Some Practicalities
32. Classical Stationary Iterative Methods
33. Regularizing CG Iterations
34. Convergence Properties of Regularizing CG Iterations
35. The LSQR Algorithm in Finite Precision
36. Hybrid Methods
37. Iterative Regularization Methods in Action
38. Chapter 7: Parameter-Choice Methods. Pragmatic Parameter Choice
39. The Discrepancy Principle
40. Methods Based on Error Estimation
41. Generalized Cross-Validation
42. The L-Curve Criterion
43. Parameter-Choice Methods in Action
44. Experimental Comparisons of the Methods
45. Chapter 8. Regularization Tools
46. Bibliography
47. Index.